Probabilistic Weibull Methodology for Fracture Prediction of Brittle and Ductile Materials

Article Preview

Abstract:

In this work, a three-parameter Weibull methodology for fracture prediction of brittle and ductile materials is presented. The approach proposed requires previous definition of the failure criterion to be applied. The parameter estimation is achieved for proportionally and non-proportionally increasing stresses. The case of two concurrent failure types is also handled. The resulting primary failure distribution can be expressed as a function of an effective size (length, area or volume) for its subsequent application in practical design of specimens or components using FEM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

443-451

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Castagne, A. M. Habraken, and S. Cescotto, Application of a Damage Model to an Aluminum Alloy, Int. J. Damage Mech., vol. 12, no. 1, p.5–30, Jan. (2003).

DOI: 10.1177/1056789503012001001

Google Scholar

[2] F. Mudry, A local approach to cleavage fracture, Nucl. Eng. Des., vol. 105, no. 1, p.65–76, (1987).

Google Scholar

[3] F. M. Beremin, A. Pineau, F. Mudry, J. -C. Devaux, Y. D'Escatha, and P. Ledermann, A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metall. Trans. A, vol. 14, no. 11, p.2277–2287, Nov. (1983).

DOI: 10.1007/bf02663302

Google Scholar

[4] W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., vol. 18, p.293 – 297, (1951).

Google Scholar

[5] M. Muñiz-Calvente, A. Fernández-Canteli, V. Shlyannikov, and E. Castillo, A general methodology based on Weibull distribution applicable to distinct failure criteria, J. Eur. Ceram. Soc., vol. (Submitted).

Google Scholar

[6] X. Gao, R. H. Dodds, R. L. Tregoning, J. A. Joyce, and R. E. Link, A Weibull stress model to predict cleavage fracture in plates containing surface cracks, p.481–493, (1999).

DOI: 10.1046/j.1460-2695.1999.00202.x

Google Scholar

[7] C. Ruggieri, Influence of threshold parameters on cleavage fracture predictions using the Weibull stress model, vol. 1921, p.281–304, (2001).

Google Scholar

[8] A. Bakker and R. W. J. Koers, Prediction of Cleavage Fracture Events in the Brittle-Ductile Transition Region of a Ferritic Steel, (1991).

DOI: 10.1520/stp14636s

Google Scholar

[9] L. Xia and C. F. Shih, Ductile crack growth-III. Transition to cleavage fracture incorporating statistics, J. Mech. Phys. Solids, vol. 44, no. 4, p.603–639, (1996).

DOI: 10.1016/0022-5096(95)00086-0

Google Scholar

[10] X. Gao, C. Ruggieri, and R. H. Dodds, Calibration of Weibull stress parameters using fracture toughness data, Int. J. Fract., vol. 92, no. 200004, p.175–200, (1998).

Google Scholar

[11] ASTM E1921 - 13a Standard Test Method for Determination of Reference Temperature for Ferritic Steels in the Transition Range.

Google Scholar

[12] A. Fernández-Canteli, M. J. Lamela, M. J. Garcia-Prieto, and E. Castillo, Strength characterization of glass by means of the statistical theory of confounded data, Key Eng. Mater., p.1923–1926, (2004).

DOI: 10.4028/www.scientific.net/kem.264-268.1923

Google Scholar

[13] C. Przybilla, A. Fernández-Canteli, and E. Castillo, Maximum likelihood estimation for the three-parameter Weibull cdf of strength in presence of concurrent flaw populations, J. Eur. Ceram. Soc., vol. 33, no. 10, p.1721–1727, Sep. (2013).

DOI: 10.1016/j.jeurceramsoc.2013.02.028

Google Scholar

[14] E. Castillo, A. Fernández Canteli, and A. S. Hadi, On fitting a fatigue model to data, Int. J. Fatigue, vol. 21, p.97–106, (1999).

DOI: 10.1016/s0142-1123(98)00048-6

Google Scholar

[15] E. Castillo, A. Fernández-Canteli, H. Pinto, and M. López-Aenlle, A general regression model for statistical analysis of strain-life data, Mater. Lett., vol. 62, no. 21–22, p.3639–3642, (2008).

DOI: 10.1016/j.matlet.2008.04.015

Google Scholar

[16] C. Przybilla, Mechanical characterization of materials in fracture and fatigue focussed on the size effect, University of Oviedo, (2014).

Google Scholar

[17] L. G. Johnson, The Statistical Treatment of Fatigue Experiments. Taylor & Francis Group, (1964).

Google Scholar

[18] A. Bernard and E. C. Bos-Levenbach, The Plotting of Observations on Probability-paper. Stichting Mathematisch Centrum. Statistische Afdeling., Sep. (1955).

Google Scholar