[1]
S. Castagne, A. M. Habraken, and S. Cescotto, Application of a Damage Model to an Aluminum Alloy, Int. J. Damage Mech., vol. 12, no. 1, p.5–30, Jan. (2003).
DOI: 10.1177/1056789503012001001
Google Scholar
[2]
F. Mudry, A local approach to cleavage fracture, Nucl. Eng. Des., vol. 105, no. 1, p.65–76, (1987).
Google Scholar
[3]
F. M. Beremin, A. Pineau, F. Mudry, J. -C. Devaux, Y. D'Escatha, and P. Ledermann, A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metall. Trans. A, vol. 14, no. 11, p.2277–2287, Nov. (1983).
DOI: 10.1007/bf02663302
Google Scholar
[4]
W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., vol. 18, p.293 – 297, (1951).
Google Scholar
[5]
M. Muñiz-Calvente, A. Fernández-Canteli, V. Shlyannikov, and E. Castillo, A general methodology based on Weibull distribution applicable to distinct failure criteria, J. Eur. Ceram. Soc., vol. (Submitted).
Google Scholar
[6]
X. Gao, R. H. Dodds, R. L. Tregoning, J. A. Joyce, and R. E. Link, A Weibull stress model to predict cleavage fracture in plates containing surface cracks, p.481–493, (1999).
DOI: 10.1046/j.1460-2695.1999.00202.x
Google Scholar
[7]
C. Ruggieri, Influence of threshold parameters on cleavage fracture predictions using the Weibull stress model, vol. 1921, p.281–304, (2001).
Google Scholar
[8]
A. Bakker and R. W. J. Koers, Prediction of Cleavage Fracture Events in the Brittle-Ductile Transition Region of a Ferritic Steel, (1991).
DOI: 10.1520/stp14636s
Google Scholar
[9]
L. Xia and C. F. Shih, Ductile crack growth-III. Transition to cleavage fracture incorporating statistics, J. Mech. Phys. Solids, vol. 44, no. 4, p.603–639, (1996).
DOI: 10.1016/0022-5096(95)00086-0
Google Scholar
[10]
X. Gao, C. Ruggieri, and R. H. Dodds, Calibration of Weibull stress parameters using fracture toughness data, Int. J. Fract., vol. 92, no. 200004, p.175–200, (1998).
Google Scholar
[11]
ASTM E1921 - 13a Standard Test Method for Determination of Reference Temperature for Ferritic Steels in the Transition Range.
Google Scholar
[12]
A. Fernández-Canteli, M. J. Lamela, M. J. Garcia-Prieto, and E. Castillo, Strength characterization of glass by means of the statistical theory of confounded data, Key Eng. Mater., p.1923–1926, (2004).
DOI: 10.4028/www.scientific.net/kem.264-268.1923
Google Scholar
[13]
C. Przybilla, A. Fernández-Canteli, and E. Castillo, Maximum likelihood estimation for the three-parameter Weibull cdf of strength in presence of concurrent flaw populations, J. Eur. Ceram. Soc., vol. 33, no. 10, p.1721–1727, Sep. (2013).
DOI: 10.1016/j.jeurceramsoc.2013.02.028
Google Scholar
[14]
E. Castillo, A. Fernández Canteli, and A. S. Hadi, On fitting a fatigue model to data, Int. J. Fatigue, vol. 21, p.97–106, (1999).
DOI: 10.1016/s0142-1123(98)00048-6
Google Scholar
[15]
E. Castillo, A. Fernández-Canteli, H. Pinto, and M. López-Aenlle, A general regression model for statistical analysis of strain-life data, Mater. Lett., vol. 62, no. 21–22, p.3639–3642, (2008).
DOI: 10.1016/j.matlet.2008.04.015
Google Scholar
[16]
C. Przybilla, Mechanical characterization of materials in fracture and fatigue focussed on the size effect, University of Oviedo, (2014).
Google Scholar
[17]
L. G. Johnson, The Statistical Treatment of Fatigue Experiments. Taylor & Francis Group, (1964).
Google Scholar
[18]
A. Bernard and E. C. Bos-Levenbach, The Plotting of Observations on Probability-paper. Stichting Mathematisch Centrum. Statistische Afdeling., Sep. (1955).
Google Scholar