Statistical Laws of Dynamic Fragmentation of ZrO2 Ceramics

Article Preview

Abstract:

Dynamic fragmentation of ceramic samples with different porosity were carried out using modified Hopkinson bar setup, which allow us to keep samples safe (in order to define fragment size distribution) and to measure fractoluminescence impulses occurred on the fracture surfaces (in order to establish the distribution of intervals between impulses). The analysis of experimental data reveals that the fragment size distribution and distribution of interval between fractoluminescence impulses obeys a power law, which exponent depends on ceramics porosity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

468-475

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Vettegren', A. Bashkarev, R. Mamalimov, I. Shcherbakov, Fractoluminescense of crystalline quartz upon an impact, Physics of the Solid State. 50(1), (2008) 28-31.

DOI: 10.1134/s1063783408010071

Google Scholar

[2] M. Davydova, S. Uvarov, Fractal Statistics of Brittle Fragmentation, Fracture and Structural Integrity. 24 (2013) 60-68.

Google Scholar

[3] M.M. Davydova, S.V. Uvarov, O.B. Naimark, Scale invariance in dynamic fragmentation of quartz, Physical Mesomechanics. 17 (1) (2014) 81-88.

DOI: 10.1134/s1029959914010093

Google Scholar

[4] M. Davydova, S. Uvarov, V. Chudinov, Scaling law of quasi brittle fragmentation, Procedia Materials Science. 3 (2014) 580-585.

DOI: 10.1016/j.mspro.2014.06.096

Google Scholar

[5] I.P. Scherbakov, V.S. Kuksenko, A.E. Chmel, Nonextensive statistical analysis of the data on the high-speed impact fracture of solids, Journal of Experimental and Theoretical Physics Letters. 94(5) (2011) 378-381.

DOI: 10.1134/s0021364011170152

Google Scholar

[6] A. Chmel, I. Scherbakov, Failure initiation in impact-fracturing silica glass and silica ceramics, Journal of Non-Crystalline Solids. 369 (2013) 34-37.

DOI: 10.1016/j.jnoncrysol.2013.03.019

Google Scholar

[7] D.S. Nikitin, V.A. Zhukova, S.N. Kulkov, V.V. Petrov, S.P. Buyakova, Preparation of porous ceramics from nanocrystalline zirconia and their microstructure, Inorganic Materials. 7(7) (2004) 760-763.

DOI: 10.1023/b:inma.0000034778.00156.a0

Google Scholar

[8] S.N. Kulkov, V.I. Maslovskii, S.P. Buyakova, D.S. Nikitin, Non-hooke's behavior of porous zirconia subjected to high-rate compressive deformation, Technical Physics. The Russian Journal of Applied Physics. 3 (2002) 320-324.

DOI: 10.1134/1.1463121

Google Scholar

[9] D.E. Grady, Fragment size distributions from the dynamic fragmentation of brittle solids, Int. J. Impact Engineering. 35 (2008) 1557–1562.

DOI: 10.1016/j.ijimpeng.2008.07.042

Google Scholar

[10] L. Oddershede, P. Dimon, J. Bohr, Self-Organized criticality in fragmenting, Physical Review Letters. 71 (1993) 3107-3110.

DOI: 10.1103/physrevlett.71.3107

Google Scholar