[1]
D. Li, A.K. Ghosh. Biaxial warm forming behavior of aluminum sheet alloys. Int. J. of Materials Process Tech., l1 (45) (2004) 281-293.
DOI: 10.1016/j.jmatprotec.2003.07.003
Google Scholar
[2]
M. Mohamed, A.D. Foster, J. Lin. Solution heat treatment in HFQ process. Steel Res. Int., 79(11) (2008) 160-167.
Google Scholar
[3]
P.S. Keeler. Determination of forming limits in automotive stampings. Sheet Met. Ind., l42 (1965) 683-91.
Google Scholar
[4]
M.G. Goodwin. Application of strain analysis to sheet metal forming problems in the press shop. Metall. Italiana, 60 (1968) 764-74.
Google Scholar
[5]
H. Fatmaoui, R. Mesrar, J. Chaoufi. Intrinsic diagram of sheet metal forming limits for arbitrary strain paths. J. of Materials: Design and applications, 222(4) (2008) 223-229.
DOI: 10.1243/14644207jmda188
Google Scholar
[6]
G. Palumbo, D. Sorgente, L.A. Tricarico. A numerical and experimental investigation of AZ31 formability at elevated temperatures using a constant strain rate test. Mater. Des., l31(2010) 1308-1316.
DOI: 10.1016/j.matdes.2009.09.009
Google Scholar
[7]
M.A. Kröhn, S.B. Leen, T.H. Hyde. A superplastic forming limit diagram concept for Ti-6Al-4V. J. of Materials: Design and Applications, l221(4) (2007) 251-264.
DOI: 10.1243/14644207jmda150
Google Scholar
[8]
F. Djavanroodi, A. Derogar. Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater. Des., l31 (2010) 4866-4875.
DOI: 10.1016/j.matdes.2010.05.030
Google Scholar
[9]
J. Lin, M. Mohamed, D. Balint, T.A. Dean. The Development of CDM-based theories for predicting FLD for hot stamping applications. International Journal of Damage Mechanics, 23(5) (2014) 684-701.
DOI: 10.1177/1056789513507731
Google Scholar
[10]
Z. Shi, Y. Wang, J. Lin, T. Dean, D. Balint, M. Stanton and D. Watson. An Investigation, Using Standard Experimental Techniques, to Determine FLCs at Elevated Temperature for Aluminium Alloys. Proceedings of the 3rd International Conference on New Forming Technology, Aug. 26-28 (2012).
Google Scholar
[11]
J. Lin, Y. Liu, T.A. Dean. A Review on Damage Mechanisms, Models and Calibration Methods under Various Deformation Conditions. In. J. of Damage Mechanics. l14 (2005) 299-319.
DOI: 10.1177/1056789505050357
Google Scholar
[12]
J. Lin, J. Yang. GA-based multiple objective optimization for determining viscoplastic constitutive equations for superplastic alloys. Int. J. Plasticity, l15 (1999) 1181-1196.
DOI: 10.1016/s0749-6419(99)00031-5
Google Scholar
[13]
J. Lin, T.A. Dean. A set of unified constitutive equations for modeling microstructure evolution in hot deformation. J. Mater. Process Tech., 167(2-3) (2005) 354-362.
Google Scholar
[14]
Z. Marciniak, K. Kuczynski, T. Pokora. Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int. J. Mech. Sci., 15 (1973) 789-805.
DOI: 10.1016/0020-7403(73)90068-4
Google Scholar
[15]
K. Nakazima, T. Kikuma, K. Asaku. Study on the formability of steel sheet. Yawata Technical Report, 264 (1968).
Google Scholar