Strain-Based Continuum Damage Mechanics Model for Predicting FLC of AA5754 under Warm Forming Conditions

Article Preview

Abstract:

This paper presents a novel strain-based continuum damage mechanics (CDM) model for predicting forming limit curve (FLC) of AA5754 under warm forming conditions. The model is formulated and calibrated based on two different sets of experimental data; isothermal uniaxial tensile data at temperature range of 20-300°C and strain rate range of 0.001-10 s-1 and isothermal FLC data at temperatures range of 20-300°C and forming speeds of 20-300 mm s-1. A good agreement has been achieved between the experimental and numerical results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

460-467

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Li, A.K. Ghosh. Biaxial warm forming behavior of aluminum sheet alloys. Int. J. of Materials Process Tech., l1 (45) (2004) 281-293.

DOI: 10.1016/j.jmatprotec.2003.07.003

Google Scholar

[2] M. Mohamed, A.D. Foster, J. Lin. Solution heat treatment in HFQ process. Steel Res. Int., 79(11) (2008) 160-167.

Google Scholar

[3] P.S. Keeler. Determination of forming limits in automotive stampings. Sheet Met. Ind., l42 (1965) 683-91.

Google Scholar

[4] M.G. Goodwin. Application of strain analysis to sheet metal forming problems in the press shop. Metall. Italiana, 60 (1968) 764-74.

Google Scholar

[5] H. Fatmaoui, R. Mesrar, J. Chaoufi. Intrinsic diagram of sheet metal forming limits for arbitrary strain paths. J. of Materials: Design and applications, 222(4) (2008) 223-229.

DOI: 10.1243/14644207jmda188

Google Scholar

[6] G. Palumbo, D. Sorgente, L.A. Tricarico. A numerical and experimental investigation of AZ31 formability at elevated temperatures using a constant strain rate test. Mater. Des., l31(2010) 1308-1316.

DOI: 10.1016/j.matdes.2009.09.009

Google Scholar

[7] M.A. Kröhn, S.B. Leen, T.H. Hyde. A superplastic forming limit diagram concept for Ti-6Al-4V. J. of Materials: Design and Applications, l221(4) (2007) 251-264.

DOI: 10.1243/14644207jmda150

Google Scholar

[8] F. Djavanroodi, A. Derogar. Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater. Des., l31 (2010) 4866-4875.

DOI: 10.1016/j.matdes.2010.05.030

Google Scholar

[9] J. Lin, M. Mohamed, D. Balint, T.A. Dean. The Development of CDM-based theories for predicting FLD for hot stamping applications. International Journal of Damage Mechanics, 23(5) (2014) 684-701.

DOI: 10.1177/1056789513507731

Google Scholar

[10] Z. Shi, Y. Wang, J. Lin, T. Dean, D. Balint, M. Stanton and D. Watson. An Investigation, Using Standard Experimental Techniques, to Determine FLCs at Elevated Temperature for Aluminium Alloys. Proceedings of the 3rd International Conference on New Forming Technology, Aug. 26-28 (2012).

Google Scholar

[11] J. Lin, Y. Liu, T.A. Dean. A Review on Damage Mechanisms, Models and Calibration Methods under Various Deformation Conditions. In. J. of Damage Mechanics. l14 (2005) 299-319.

DOI: 10.1177/1056789505050357

Google Scholar

[12] J. Lin, J. Yang. GA-based multiple objective optimization for determining viscoplastic constitutive equations for superplastic alloys. Int. J. Plasticity, l15 (1999) 1181-1196.

DOI: 10.1016/s0749-6419(99)00031-5

Google Scholar

[13] J. Lin, T.A. Dean. A set of unified constitutive equations for modeling microstructure evolution in hot deformation. J. Mater. Process Tech., 167(2-3) (2005) 354-362.

Google Scholar

[14] Z. Marciniak, K. Kuczynski, T. Pokora. Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int. J. Mech. Sci., 15 (1973) 789-805.

DOI: 10.1016/0020-7403(73)90068-4

Google Scholar

[15] K. Nakazima, T. Kikuma, K. Asaku. Study on the formability of steel sheet. Yawata Technical Report, 264 (1968).

Google Scholar