[1]
C. Garion and B. Skoczen. Combined Model of Strain-induced Phase Transformation and Orthotropic Damage in Ductile Materials at Cryogenic Temperatures. International Journal of Damage Mechanics, 12: 313-356, (2003).
DOI: 10.1177/105678903036225
Google Scholar
[2]
K. J. Lee, M. S. Chun, M. H. Kim, and J. M. Lee. A new constitutive model of austenitic stainless steel for cryogenic applications. Computational Materials Science, 46: 1152-1162, (2009).
DOI: 10.1016/j.commatsci.2009.06.003
Google Scholar
[3]
G. B. Olson and M. Cohen. Kinetics of strain-induced martensitic nucleation. Metallurgical Transactions A, 6A: 791-795, (1975).
DOI: 10.1007/bf02672301
Google Scholar
[4]
J. Lemaitre and R. Desmorat. Engineering Damage Mechanics. Springer Berlin Heidelberg New York, (2005).
Google Scholar
[5]
S. R. Bodner. Unified Plasticity for Engineering Applications. Springer US, (2002).
Google Scholar
[6]
G. Rousselier. Dissipation in porous metal plasticity and ductile fracture. Journal of the Mechanics and Physics of Solids, 49: 1727-1746, (2001).
DOI: 10.1016/s0022-5096(01)00013-8
Google Scholar
[7]
H. Hallberg, P. Håkanson, and M. Ristinmaa. A constitutive model for the formation of martensite in austenitic steels under large strain plasticity. International Journal of Plasticity, 23: 1213- 1239, (2007).
DOI: 10.1016/j.ijplas.2006.11.002
Google Scholar
[8]
Y. Zhu, G. Kang, Q. Kan, and O. T. Bruhns. Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. International Journal of Plasticity, 54: 34-55, (2014).
DOI: 10.1016/j.ijplas.2013.08.004
Google Scholar
[9]
G. Rousselier. Ductile Fracture Models and their Potential in Local Approach of Fracture. Nuclear Engineering and Design, 105: 97-111, (1987).
DOI: 10.1016/0029-5493(87)90234-2
Google Scholar
[10]
J. Lemaitre and J. -L. Chaboche. Mechanics of solid materials. Cambridge University Press, (1998).
Google Scholar
[11]
M. Berveiller and F. D. Fischer, editors. Mechanics of Solids with Phase Changes. Springer, (1997).
Google Scholar
[12]
J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer, (1998).
Google Scholar
[13]
M. Kuna and D. Z. Sun. Three-dimensional cell model analyses of void growth in ductile metals. International Journal of Fracture, 81: 235-258, (1996).
DOI: 10.1007/bf00039573
Google Scholar
[14]
G. Rousselier and M. Luo. A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology. International Journal of Plasticity, 55: 1-24, (2014).
DOI: 10.1016/j.ijplas.2013.09.002
Google Scholar
[15]
V. Tvergaard and A. Needleman. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 32: 157-169, (1984).
DOI: 10.1016/0001-6160(84)90213-x
Google Scholar
[16]
M. Springmann and M. Kuna. Determination of ductile damage parameters by local deformation fields: measurement and simulation. Archive of Applied Mechanics, 75: 775-797, (2006).
DOI: 10.1007/s00419-006-0033-9
Google Scholar