A Review on DSTATCOM Neural Network Control Algorithm for Power Quality Improvement

Article Preview

Abstract:

This paper reviews neural network control algorithm for power quality improvement. Further, this paper focuses on the neural network control algorithm for DSTATCOM and surveys its area of improvements. Various architectures of Neural Network such as Adaline/Widrow-Hoff, perceptron, Back-propagation (BP), Hopfield, and Radial Basis Function (RBF) that has been reviewed in this paper. It is found that many researches on theoretical works and single phase system are widely performed, whereas its application on distribution network for three phase system is hardly found. Even so much improvement that have been done by researchers theoretically to improve the drawbacks of Neural Network controller; there are still wide gaps for verification through experimental implementation and industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

363-367

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. R. Arya and B. Singh, Power quality improvement under nonideal AC mains in distribution system, Electr. Power Syst. Res., vol. 106, p.86–94, Jan. (2014).

DOI: 10.1016/j.epsr.2013.08.008

Google Scholar

[2] K. R. Padiyar, FACTS Controllers in Power Transmission and Distribution. New Delhi: New Age International (P) Limited, Publishers, (2007).

Google Scholar

[3] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning. Hoboken, New Jersey: John Wiley & Sons, Inc., (2007).

DOI: 10.1002/0470118938

Google Scholar

[4] S. Rechka, E. Ngandui, J. Xu, and P. Sicard, Analysis of harmonic detection algorithms and their application to active power fi lters for harmonics compensation and resonance damping, Can. J. Elect. Comput. Eng., vol. 28, no. 1, p.41–51, (2003).

DOI: 10.1109/cjece.2003.1426073

Google Scholar

[5] IEEE Std 1531TM-2003 IEEE, (2003).

Google Scholar

[6] IEC 61000-3-2, (2004).

Google Scholar

[7] IEEE Std 519TM-2014 (Revision of IEEE Std 519-1992), (2014).

Google Scholar

[8] F.F. Ewald and A.S.M. Mohammad, Power Quality in Power Systems and Electrical Machines. London, U.K.: Elsevier Academic Press, 2008, p.2–13.

Google Scholar

[9] N. Mariun, A. Alam, S. Mahmod, and H. Hizam, Review of Control Strategies for Power Quality Conditioners, in National Power & Energy Conference (PECon) Proceedings, 2004, p.109–115.

DOI: 10.1109/pecon.2004.1461626

Google Scholar

[10] J. J. Paserba, G. F. Reed, M. Takeda, and T. Aritsuka, FACTS and Custom Power Equipment for the Enhancement of Power Transmission System Performance and Power Quality, in Symposium of Specialists in Electric Operational and Expansion Planning (VII SEPOPE), 2000, p.1.

Google Scholar

[11] D. Masand, S. Jain, and G. Agnihotri, Control Algorithms for Distribution Compensator, in IEEE ISIE, 2006, p.1830–1834.

Google Scholar

[12] S & C PureWave DSTATCOM Distributed Static Compensator, (2008).

Google Scholar

[13] S. Bhattacharya, A., Chakraborty, C., Bhattacharya, Shunt Compensation: Reviewing Traditional Methods of Reference Current Generation, IEEE Ind. Electron. Mag, no. September, p.38–49, (2009).

DOI: 10.1109/mie.2009.933881

Google Scholar

[14] A. M. Massoud, S. J. Finney, and B. W. Williams, Review of Harmonic Current Extraction Techniques for an Active Power Filter, in 2004 11th International Conference on Harmonies and Quality of Power, 2004, p.154–159.

DOI: 10.1109/ichqp.2004.1409345

Google Scholar

[15] R. R. Sawant and M. C. Chandorkar, A Multifunctional Four-Leg Grid-connected Compensator, IEEE Trans. Ind. Appl., vol. 45, no. 1, p.249–259, (2009).

DOI: 10.1109/tia.2008.2009704

Google Scholar

[16] B. Singh and S. Raj Arya, Composite observer-based control algorithm for  distribution static compensator in four-wire supply system, IET Power Electron., vol. 6, no. 2, p.251–260, Feb. (2013).

DOI: 10.1049/iet-pel.2012.0412

Google Scholar

[17] B. Singh and S. R. Arya, Back-Propagation Control Algorithm for Power Quality Improvement Using DSTATCOM, IEEE Trans. Ind. Electron., vol. 61, no. 3, p.1204–1212, (2014).

DOI: 10.1109/tie.2013.2258303

Google Scholar

[18] S. R. Arya and B. Singh, Neural Network Based Conductance Estimation Control Algorithm for Shunt Compensation, IEEE Trans. Ind. Informatics, vol. 10, no. 1, p.569–577, Feb. (2014).

DOI: 10.1109/tii.2013.2264290

Google Scholar

[19] Y. Chen and R. M. O'Connell, Active Power Line Conditioner with a Neural Network Control, IEEE Trans. Ind. Appl., vol. 33, no. 4, p.1131–1136, (1997).

DOI: 10.1109/28.605758

Google Scholar

[20] L. L. Lai, W. L. Chan, C. T. Tse, and A. T. P. So, Real-Time Frequency and Harmonic Evaluation using Artificial Neural Networks, IEEE Trans. Power Deliv., vol. 14, no. 1, p.52–59, (1999).

DOI: 10.1109/61.736681

Google Scholar

[21] Q. Wang, N. Wu, Z. Wang, and S. Member, A Neuron Adaptive Detecting Approach of Harmonic Current for APF and Its Realization of Analog Circuit, Ieee Trans. Instrum. Meas., vol. 50, no. 1, p.77–84, (2001).

DOI: 10.1109/19.903881

Google Scholar

[22] M. Rukonuzzaman, K. Nishida, and M. Nakaoka, DSP Control Shunt APF with Harmonic Extraction by Adaptive Neural Network, in Proc. IEEE IAS Annu. Meeting, 2003, p.1215–1221.

DOI: 10.1109/ias.2003.1257705

Google Scholar

[23] L. H. Tey, P. L. So, and Y. C. Chu, Improvement of Power Quality Using Adaptive Shunt Active Filter, IEEE Trans. Power Deliv., vol. 20, no. 2, p.1558–1568, Apr. (2005).

DOI: 10.1109/tpwrd.2004.838641

Google Scholar

[24] B. Singh, V. Verma, and J. Solanki, Neural Network-Based Selective Compensation of Current Quality Problems in Distribution System, IEEE Trans. Ind. Electron., vol. 54, no. 1, p.53–60, (2007).

DOI: 10.1109/tie.2006.888754

Google Scholar

[25] D. O. Abdeslam, P. Wira, J. Mercklé, D. Flieller, and Y. -A. Chapuis, A Unified Artificial Neural Network Architecture for Active Power Filters, IEEE Trans. Ind. Electron., vol. 54, no. 1, p.61–76, (2007).

DOI: 10.1109/tie.2006.888758

Google Scholar

[26] G. W. Chang, C. -I. Chen, and Y. -F. Teng, Radial-Basis-Function-Based Neural Network for Harmonic Detection, IEEE Trans. Ind. Electron., vol. 57, no. 6, p.2171–2179, Jun. (2010).

DOI: 10.1109/tie.2009.2034681

Google Scholar

[27] S. Janpong, K. -L. Areerak, and K. -N. Areerak, A Literature Survey of Neural Network Applications for Shunt Active Power Filters, World Acad. Sci. Eng. Technol., vol. 5, no. 12, p.273–279, (2011).

DOI: 10.3390/en14144351

Google Scholar

[28] A. S. S. Murugan and D. Muthurakesh, Harmonics Impedance Measurement Using Neural Network, Int. J. Innov. Res. Sci. Eng. Technol., vol. 3, no. 3, p.244–250, (2014).

Google Scholar

[29] A. Zouidi, F. Fnaiech, K. Al-haddad, and S. Rahmani, Artificial Neural Networks as Harmonic Detectors, in 32nd Annual Conference on IEEE Industrial Electronics, IECON 2006, 2006, no. 1, p.2889–2892.

DOI: 10.1109/iecon.2006.347750

Google Scholar

[30] I. Jung and G. Wang, Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network, World Acad. Sci. Eng. Technol., vol. 1, no. 12, p.180–184, (2007).

Google Scholar

[31] H. Yu, T. Xie, S. Paszczyñski, and B. M. Wilamowski, Advantages of Radial Basis Function Networks for Dynamic System Design, IEEE Trans. Ind. Electron., vol. 58, no. 12, p.5438–5450, (2011).

DOI: 10.1109/tie.2011.2164773

Google Scholar

[32] N. Pecharanin, H. Mitsui, and M. Sone, Harmonic detection by using neural network, " in Proceedings of ICNN, 95 - International Conference on Neural Networks, 1995, vol. 2, p.923–926.

DOI: 10.1109/icnn.1995.487542

Google Scholar

[33] X. Mao, The Harmonic Currents Detecting Algorithm Based on Adaptive Neural Network, in 2009 Third International Symposium on Intelligent Information Technology Application, 2009, vol. 2, p.51–53.

DOI: 10.1109/iita.2009.138

Google Scholar

[34] J. Wu, H. Pang, and X. Xu, Neural-Network-Based Inverse Control Method for Active Power Filter System, in IEEE International Symposium on Intelligent Control, 2006, vol. 0, p.3094–3097.

DOI: 10.1109/isic.2006.285564

Google Scholar

[35] L. L. Lai, W. L. Chan, and A. T. P. So, A Two-ANN Approach to Frequency and Harmonic Evaluation, in Fifth International Conference on Artificial Neural Networks, 1997, no. 440, p.245–250.

DOI: 10.1049/cp:19970734

Google Scholar

[36] B. K. Bose, Expert System , Fuzzy Logic , and Neural Network Applications in Power Electronics and Motion Control, Proc. IEEE, vol. 82, no. 8, p.1303–1323, (1994).

DOI: 10.1109/5.301690

Google Scholar

[37] H. -S. Ahn, Y. Chen, and K. L. Moore, Iterative Learning Control: Brief Survey and Categorization, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 37, no. 6, p.1099–1121, Nov. (2007).

DOI: 10.1109/tsmcc.2007.905759

Google Scholar