Friction Stir Welding of the Aluminum Matrix Composite - A Literature Review

Article Preview

Abstract:

Aluminium matrix composites have received the attention of numerous researchers, because of its attractive properties like high strength, good thermal conductivity and more strength to weight ratio. Application of the conventional welding processes for aluminium matrix composites, facilitates the formation of undesirable phase at the welded region, which limits the wide spread application. The objective of this paper is to review the literatures belonging to the friction stir welding of the composites and explore the challenges associated to maximize joint efficiency. The major contribution of this paper is to study the issue of welding of ex-situ and in-situ composites, various process parameters, properties of joint and post weld heat treatment process to improve the joint efficiency. This literature review provides some research gaps in the friction stir welding of composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

669-673

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, J. Song, Dry sliding wear behavior of Al2O3 fiber and SiC particle reinforced aluminium based MMCs fabricated by squeezecasting method, Trans. Nonferrous Met. Soc. China 21 (2011) 1441–1448.

DOI: 10.1016/s1003-6326(11)60879-0

Google Scholar

[2] M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, A.K. Lakshminarayanan, Optimization of process parameters for friction stir welding of cast aluminum alloy A319 by Taguchi method, J. Sci Indu. Res., 68 (2009) 36-43.

DOI: 10.22486/iwj.v41i2.178090

Google Scholar

[3] F.C. Liu, Z.Y. Ma, Influence of Tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy, Metall. Mater Tran. A, 39 (2008) 2378-2388.

DOI: 10.1007/s11661-008-9586-2

Google Scholar

[4] T. Sakthivel, J. Mukhopadhyay, Microstructure and mechanical properties of friction stir welded copper, J. Mater. Sci., 42 (2007) 8126-8129.

DOI: 10.1007/s10853-007-1666-y

Google Scholar

[5] S. Babu, K. Elangovan, V. Balasubramanian, M. Balasubramanian, Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints, Met. Mater. I, 15 (2009) 321-330.

DOI: 10.1007/s12540-009-0321-3

Google Scholar

[6] T. Prater, Friction Stir Welding of Metal Matrix Composites for use in aerospace structures, Acta Astro, 93 (2014) 366–373.

DOI: 10.1016/j.actaastro.2013.07.023

Google Scholar

[7] H. Uzun, Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite, Mater. Des. 28 (2007) 1440–1446.

DOI: 10.1016/j.matdes.2006.03.023

Google Scholar

[8] B. Ashok Kumar, N. Murugan, Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite, Mater. Des., 57 (2014) 383–393.

DOI: 10.1016/j.matdes.2013.12.065

Google Scholar

[9] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol. %Al2O3p composite, Comp. Sci Technol, 67 ( 2007) 605–615.

DOI: 10.1016/j.compscitech.2006.07.029

Google Scholar

[10] G.J. Fernandez, L.E. Murr, Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite, Mater. Charact. 52 (2004) 65–75.

DOI: 10.1016/j.matchar.2004.03.004

Google Scholar

[11] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Microstructure, tensile and fatigue properties of AA6061/20 vol. %Al2O3p friction stir welded joints, Comp. Part A: . App. Sci. Manu., 38 (2007) 1200–1210.

DOI: 10.1016/j.compositesa.2006.06.009

Google Scholar

[12] K. Kalaiselvan, N. Murugan, Role of friction stir welding parameters on tensile strength of AA6061–B4C composite joints, Tran . Nonferrous Met Soc China, 23 (2013) 616–624.

DOI: 10.1016/s1003-6326(13)62507-8

Google Scholar

[13] D. Wang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, Achieving friction stir welded SiCp/Al–Cu–Mg composite joint of nearly equal strength to base material at high welding speed, Mater. Sci. Eng. A, 589 (2014) 271–274.

DOI: 10.1016/j.msea.2013.09.096

Google Scholar

[14] D. Wang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Friction stir welding of SiCp/2009Al composite plate, Mater. Des., 47 (2013) 243–247.

DOI: 10.1016/j.matdes.2012.11.052

Google Scholar

[15] A.H. Feng, B.L. Xiao, Z.Y. Ma, Grain boundary misorientation and texture development in friction stir welded SiCp/Al–Cu–Mg composite, Mater Sci Eng A, 497 (2008) 515–518.

DOI: 10.1016/j.msea.2008.07.044

Google Scholar

[16] H.J. Liu, J.C. Feng, H. Fujii, K. Nogi, Wear characteristics of a WC–Co tool in friction stir welding of AC4A+30 vol%SiCp composite, Int.J. Mach. Tools and Manuf., 45 (2005) 1635–1639.

DOI: 10.1016/j.ijmachtools.2004.11.026

Google Scholar

[17] L. Boromei, L. Ceschini, A. Morri, G.L. Garagnani, Friction stir welding of aluminium based composites reinforced with Al2O3 Particles: effects on microstructure and charpy impact energy, Metall Sci. Technol, 1 (2005) 13-22.

Google Scholar

[18] P. Periyasamy, B. Mohan, V. Balasubramanian, S. Rajakumar, S. Venugopal, Multi-objective optimization of friction stir welding parameters using desirability approach to join al/sicp metal matrix composites, Trans. Nonferrous Met. Soc. China, 23 (2013).

DOI: 10.1016/s1003-6326(13)62551-0

Google Scholar

[19] A.H. Feng, B.L. Xiao, Z.Y. Ma, Effect of micro structural evolution on mechanical properties of friction stir welded AA2009/Sicp composite, Compo Sci Technol, 68 (2008) 2141-2148.

DOI: 10.1016/j.compscitech.2008.03.010

Google Scholar

[20] D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, Z.Y. Ma, Influence of micro structural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet, Mater. Des., 51 (2013) 199–205.

DOI: 10.1016/j.matdes.2013.04.027

Google Scholar

[21] M.M. Anand Kumar, P.K. Jha,  N.R. Mandal, D. Venkateswarlu, Influence of tool geometries and process variables on friction stir butt welding of Al–4. 5%Cu/TiC in situ metal matrix composites, Mater. Des., 59 (2014) 406–414.

DOI: 10.1016/j.matdes.2014.02.063

Google Scholar

[22] I. Dinaharan, N. Murugan, Effect of friction stir welding on microstructure mechanical and wear properties of AA6061/ZrB2 in situ cast composites, Mater. Sci. Eng: A, 543 (2012) 257–266.

DOI: 10.1016/j.msea.2012.02.085

Google Scholar

[23] H. Nami, H. Adgi, M. Sharifitabar, H. Shamabadi, Micro structural properties of friction stir welded AL/Mg2Si metal matrix cast composite, Mater. Des., 32 (2011) 976-983.

DOI: 10.1016/j.matdes.2010.07.008

Google Scholar

[24] I. Dinakaran, N. Murugan, Automation of friction stir welding process to join aluminum matxix composites by optimization , I.C. on modeling, optimiz and comput, 38 (2012) 105-110.

DOI: 10.1016/j.proeng.2012.06.015

Google Scholar

[25] S.J. Vijay, N. Murugan , Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded al–10 wt. % tib2metal matrix composite, Mater. Des. 31 ( 2010) 3585-3589.

DOI: 10.1016/j.matdes.2010.01.018

Google Scholar

[26] X. G. Chen, M. D. Silva, P. Gougeon, L. St-Georges, Microstructure and mechanical properties of friction stir welded AA6063B4C metal matrix composites, Mater. Sci. Eng A, 518 (2009) 174–184.

DOI: 10.1016/j.msea.2009.04.052

Google Scholar