[1]
A. E. Wang, Heterogeneous modeling for fixed-bed Fischer–Tropsch synthesis: Reactor model and its applications, Chemical Engineering Science, (2003), pp.867-875.
DOI: 10.1016/s0009-2509(02)00618-8
Google Scholar
[2]
L. Olsson, E. Fridell, The influence of Pt oxide formation and Pt dispersion on the reactions over Pt/Al2O3 and Pt/BaO/Al2O3, J. Catal. 210 (2002) 340-353.
DOI: 10.1006/jcat.2002.3698
Google Scholar
[3]
K. J. Whitty, H. R. Zhang, and E. G. Eddings, Emissions from syngas combustion, Combust. Sci. and Tech., 180 (2008)1117 – 1136.
DOI: 10.1080/00102200801963326
Google Scholar
[4]
Y. Traa, B. Burger, and J. Weitkamp, Zeolite‐based materials for the selective catalytic reduction of NOx with hydrocarbons, Micro porous and Meso porous Materials, 30 (1999) 3 – 41.
DOI: 10.1016/s1387-1811(99)00030-x
Google Scholar
[5]
Ingemar Odenbrand, J. Blanco, P. Avila, C. Knapp, Lean NOx reduction in real diesel exhaust with copper and platinum titania based monolithic catalysts, Applied Catalysis B: Environmental, 23 (1999) 37-44.
DOI: 10.1016/s0926-3373(99)00065-x
Google Scholar
[6]
Nauta, Weiland, S., Backx, A.C.P. K.M., Reduction of kinetic mechanisms in reactive flow models for dynamic optimization, American Control Conference, ACC '07, (2007).
DOI: 10.1109/acc.2007.4282996
Google Scholar
[7]
Yi Liu, Yang Zheng, Michael P. Harold, Dan Luss, Lean NOx Reduction with H2 and CO in Dual-Layer LNT–SCR Monolithic Catalysts: Impact of Ceria Loading, Topics in Catalysis, 56 (2013) Issue 1-8, 104-108.
DOI: 10.1007/s11244-013-9936-1
Google Scholar
[8]
W.Y. Hernándeza, A. Hadjar, M. Klotz, J. Leloup, A. Princivalle, C. Tardivat, C. Guizard, P. Vernoux, NOx storage capacity of yttria-stabilized zirconia-based catalysts, Applied Catalysis B: Environmental, 130– 131(2013)54– 64.
DOI: 10.1016/j.apcatb.2012.09.048
Google Scholar
[9]
M. Koebel, and E. O. Strutz, Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermo chemical and practical aspects, Ind. Eng. Chem. Res., 42(2003) 2093 – 2100.
DOI: 10.1021/ie020950o
Google Scholar
[10]
J. Muniz, G. Marban, and A. B. Fuertes, Low temperature selective catalytic reduction of NOover modified activated carbon fibres, Applied Catalysis B: Environmental, 27 (2000) 27 – 36.
DOI: 10.1016/s0926-3373(00)00134-x
Google Scholar
[11]
M. Koebel, and M. Elsener, Selective catalytic reduction of NO over commercial DeNOx catalysts: Experimental determination of kinetic and thermodynamic parameters, Chemical Engineering Science, 53, (1998) 657 – 669.
DOI: 10.1016/s0009-2509(97)00342-4
Google Scholar
[12]
W. S. Kijlstra, D.S. Brands, H. I. Smit, E. K. Poels, and A. Bliek, Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3: II. Reactivity of adsorbed NH3 and NO complexes, Journal of Catalysis, 171 (1997) 219 – 230.
DOI: 10.1006/jcat.1997.1789
Google Scholar
[13]
D. Tsinoglou, D and G. Koltsakis, Modeling of the selective catalytic NOx reduction in diesel exhaust including ammonia storage, Proc. IMechE: J. Automobile Engineering, 221(2007) 117– 133.
DOI: 10.1243/09544070jauto368
Google Scholar
[14]
S. Zurcher, M. Hackel, and G. Schaub, Kinetics of selective catalytic NOx reduction in a novel gas‐particle filter reactor (catalytic filter element and sponge insert), Ind. Eng. Chem. Res., 47(2008)1435 – 1442.
DOI: 10.1021/ie071091c
Google Scholar
[15]
G. Ertl, H. Knözinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, Vol. 4 Weinheim, VCH, (1997).
Google Scholar
[16]
C. N Satterfield, Heterogeneous Catalysis in Industrial Practice 2 ed., New York, McGraw–Hill Inc, (1996).
Google Scholar
[17]
Xu, L., Graham, G., McCabe, R., Hoard, J., The Feasibility of an Alumina-Based Lean NOx Trap (LNT) for Diesel and HCCI Applications, (2008), SAE 2008-01-0451.
DOI: 10.4271/2008-01-0451
Google Scholar