Natural Convection for Air and Molten Gallium in Square- and Elbow-Shaped Enclosures

Article Preview

Abstract:

Natural convection flow of air and molten gallium in square and elbow-shaped enclosures is studied by a two-dimensional numerical scheme developed by the lead author. The dependence of the flow field and Nusselt number (Nu) on the Rayleigh (Ra) and Prandtl (Pr) numbers is examined in both enclosures. Results are obtained with sufficiently large Rayleigh numbers to observe transition from steady to damped or undamped oscillatory, and chaotic flow. Constant and oscillatory heat transfer rates are compared in both enclosures for air (Pr=0.71) and molten gallium (Pr=0.024).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

462-470

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Le Quere and T. Alziary De Roquefort: Computation of Natural Convection in Two-Dimensional Cavities with Chebyshev Polynomials, Journal of Computational Physics, Vol. 57 (1985), pp.210-228.

DOI: 10.1016/0021-9991(85)90043-9

Google Scholar

[2] D. A. Mayne, A. S. Usmani, and M. Crapper: h-Adaptive Finite Element Solution of High Rayleigh Number Thermally Driven Cavity Problem, Int. J. Numer. Meth. Heat Fluid Flow, Vol. 10 (2000), pp.598-615.

DOI: 10.1108/09615530010347187

Google Scholar

[3] N. Massarotti, P. Nithiarasu, and O. C. Zienkiewicz: Characteristic-Based-Split (CBS) Algorithm for Incompressible Flow Problems with Heat Transfer, Int. J. Numer. Meth. Heat Fluid Flow, Vol. 8 (1998), pp.969-990.

DOI: 10.1108/09615539810244067

Google Scholar

[4] K. H. Winters: Oscillatory Convection in Liquid Metals in a Horizontal Temperature Gradient, International Journal for Numerical Methods in Engineering, Vol. 25(1988), pp.401-414.

DOI: 10.1002/nme.1620250210

Google Scholar

[5] R. Derebail and J. N. Koster: Numerical Simulation of Natural Convection of Gallium in a Narrow Gap, International Journal of Heat Mass Transfer, Vol. 40, No. 5 (1997), pp.1169-1180.

DOI: 10.1016/0017-9310(96)00044-0

Google Scholar

[6] J. M. Jalil, K. A. Al-tae'y and S. J. Ismail: Natural Convection in an Enclosure with a Partially Active Magnetic Field, Numerical Heat Transfer, Part A, Vol. 64 (2013), pp.72-91.

DOI: 10.1080/10407782.2013.772861

Google Scholar

[7] E. Evren-Selamet, V.S. Arpaci, and C. Borgnakke: Simulation of Laminar Buoyancy-driven Flows in an Enclosure, Numerical Heat Transfer, Part A, Vol. 22 (1992), pp.401-420.

DOI: 10.1080/10407789208944775

Google Scholar

[8] G. De Vahl Davis: Natural Convection of Air in a Square Cavity A Benchmark Numerical Solution, International Journal for Numerical Methods in Fluids, Vol. 3 (1983), pp.249-264.

DOI: 10.1002/fld.1650030305

Google Scholar

[9] B. Ramaswamy, T. C. Jue, and J. E. Akin: Semi-implicit and Explicit Finite Element Schemes for Coupled Fluid/Thermal Problems, Int. J. Numer. Meth. Eng., Vol. 34 (1992), pp.675-696.

DOI: 10.1002/nme.1620340218

Google Scholar

[10] M. T. Manzari: An Explicit Finite Element Algorithm for Convective Heat Transfer Problems: Int. J. Numer. Meth. Heat Fluid Flow, Vol. 9 (1999), pp.860-877.

DOI: 10.1108/09615539910297932

Google Scholar

[11] D. C. Wan, B. S. V. Patnaik, and G. W. Wei: A New Benchmark Quality Solution for the Buoyancy-Driven Cavity by Discrete Singular Convolution, Numerical Heat Transfer, Part B, Vol. 40 (2001), pp.199-228.

DOI: 10.1080/104077901752379620

Google Scholar