[1]
M.N. Mohd Jaafar, K. Jusoff, M.S. Osman, and M.S.A. Ishak, Combustor Aerodynamics Using Radial Swirler, International Journal of Physics Sciences, Vol. 6, No. 13, pp.3091-3098, (2011).
Google Scholar
[2]
A. Ridluan, S. Eiamsa-ard, and P. Promvonge, Numerical simulation of 3D turbulent isothermal flow in a vortex combustor. International Communication in Heat and Mass Transfer 34 (2007) 860-869.
DOI: 10.1016/j.icheatmasstransfer.2007.03.021
Google Scholar
[3]
I.V. Litvinov, S.I. Shtork, P.A. Kuibin, S.V. Alekseenko, and K. Hanjalic, Experimental study and analytical reconstruction of processing vortex in a tangential swirler, International Journal of Heat and Fluid Flow 42 (2013) 251–264.
DOI: 10.1016/j.ijheatfluidflow.2013.02.009
Google Scholar
[4]
N. Syred, and J.M. Beer, Combustion in Swirling Flows: A Review, Combustion and Flame 23, 143-201 (1974).
DOI: 10.1016/0010-2180(74)90057-1
Google Scholar
[5]
D.G. Sloan, P.J. Smith, and L.D. Smoot, Modeling of swirl in turbulent flow systems. Prog. Energy Combustion Science, 1986, Vol. 12, pp.163-250.
DOI: 10.1016/0360-1285(86)90016-x
Google Scholar
[6]
B.F. Magnussen, and B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, 16th Symposium (International) on Combustion, Combustion Institute, pp.719-729, (1976).
DOI: 10.1016/s0082-0784(77)80366-4
Google Scholar
[7]
L. Zhuowei, N. Kharoua, H. Redjem, and L. Khezzar, RANS and LES simulation of a swirling flow in a combustion chamber with different swirl intensities, Proceedings ICHMT International Symposium on Advances in Computational Heat Transfer (2012).
DOI: 10.1615/ichmt.2012.cht-12.1030
Google Scholar
[8]
M. L. Mathur, and N. R. L. MacCallum, Swirling Air Jets Issuing from Vane Swirlers. Part 1: Free Jets, Journal of the Institute of Fuel, Vol. 40, 214 – 22, (1967).
Google Scholar
[9]
R. Palm, S. Grundmann, M. Weismuller, S. Saric, S. Jakirlic, and C. Tropea, Experimental characteristization and modeling of inflow conditions for a gas turbine swirl combustor, International Journal of Heat and Fluid Flow 01/(2006).
DOI: 10.1016/j.ijheatfluidflow.2006.03.016
Google Scholar
[10]
Y.A. Eldrainy, K.M. Saqr, H.S. Aly, and M.N. Mohd Jaafar, CFD insight of the flow dynamics in a novel swirler for gas turbine combustors, International Communications in Heat and Mass Transfer 36 (2009) 936–941.
DOI: 10.1016/j.icheatmasstransfer.2009.06.013
Google Scholar
[11]
A.E.E. Khalil, and A.K. Gupta, Distributed swirl combustion for gas turbine application, Applied Energy 88 (2011) 4898–4907.
DOI: 10.1016/j.apenergy.2011.06.051
Google Scholar
[12]
S. Murphy, R. Delfos, , M.J.B.M. Pourquie, Z. Olujic, , Jansens, P.J., and Nieuwstadt, F.T.M. Prediction of strongly swirling flow within an axial hydrocyclone using two commercial CFD codes, Chemical Engineering Science 62 (2007) 1619-1635.
DOI: 10.1016/j.ces.2005.10.031
Google Scholar
[13]
N. Syred, M. Abdulsada, A. Griffiths, T.O. Doherty, and Bowen, The effect of hydrogen containing fuel blends upon flashback in swirl burners, Applied Energy 89 (2012) 106–110.
DOI: 10.1016/j.apenergy.2011.01.057
Google Scholar
[14]
N. Grech, , C. Koupper, P.K. Zachos, V. Pachidis, and R. Singh, Consideration on the numerical modeling and performance of axial swirlers under relight conditions, Journal of Engineering for Gas Turbines and Power, (2012).
DOI: 10.1115/1.4007132
Google Scholar
[15]
S.A. Hashemi, A. Fattahi, G.A. Sheikhzadeh, and M.A. Mehrabian, Investigation of the effect of air turbulence intensity on NOx emission in non-premixed hydrogen and hydrogen hydrocarbon composite fuel combustion, International Journal of Hydrogen Energy 36 (2011).
DOI: 10.1016/j.ijhydene.2011.05.002
Google Scholar
[16]
L. Anetor, E. Osakue, and C. Odetunde, Reduced mechanism approach of modeling premixed propane-air mixture using ANSYS Fluent, Engineering Journal, Vol. 16, No. 1. (2012).
DOI: 10.4186/ej.2012.16.1.67
Google Scholar
[17]
O.A. Marzouk and E.D. Huckaby, Simulation of a swirling gas-particle flow using different k-epsilon models and particle-parcel relationships, Engineering Letter, 18: 1. (2010).
Google Scholar
[18]
J.L. Xia, G. Yadigaroglu, Y.S. Liu, J. Schmidli, and B.L. Smith, Numerical and experimental study of swirling flow in a model, Int. Journal Heat Mass Transfer, Vol. 41, No. 11 pp.1485-1497, (1998).
DOI: 10.1016/s0017-9310(97)00239-1
Google Scholar