Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Article Preview

Abstract:

To get the low temperature transformation product of austenite, study of cooling behavior of coil is essential. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

496-502

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, G. Li and A. Xiao: Mater. T. Jim. Vol. 52- 11 (2011), p. (2027).

Google Scholar

[2] A. Saboonchi and S. Hassanpour: J. Mater. Process. Tech. Vol. 182-183 (2007), p.101.

Google Scholar

[3] A. Saboonchi and S. Hassanpour: Appl. Therm. Eng. Vol. 28-13 (2008), p.1630.

Google Scholar

[4] A. Saboonchi, S. Hassanpour and A. Hajiannezhad: J. Therm. Stresses. Vol. 33-36 (2010), p.521.

Google Scholar

[5] H.H. Cho, Y.G. Cho, Y.R. Im, J.K. Lee, J.H. Kwak and H.N. Han: J. Mater. Process. Tech. Vol. 210-217 (2010), p.907.

Google Scholar

[6] S. J. Park, B.H. Hong, S. C Baik and K. H Oh: ISIJ Int. Vol. 38-11 (1998), p.1262.

Google Scholar

[7] J. D Anderson, G. Degrez and R. Grundmann, in : Computational Fluid Dynamics an Introduction, Chapter, 2, Springer, Verlag Berlin Heidelberg (1981).

Google Scholar

[8] J. C. Tanehill, D. A. Anderson and R.H. Pletcher, in: Computational Fluid Mechanics and Heat Transfer, Chapter, 3, Taylor & Francis, USA (1997).

Google Scholar

[9] J. Slowik, G. Borchardt, C. Kohler, R. Jeschar and R. Scholz: Steel. Res. Vol. 61(1990), p.302.

Google Scholar

[10] J. Pullen and J.B.P. Williamson: Proc. Royal society, London, (1972)p.159.

Google Scholar

[11] B.B. Mikic: Int. J. Heat. Mass. Tran. Vol. 17- 2 (1974), p.205.

Google Scholar

[12] S.C. Baik, O. Kwon, J. Park, B.H. Hong and K.H. Oh: Met Matr. Vol. 5- 4 (1999), p.369.

Google Scholar

[13] W. Johnson and P. B. Mellor, in: Engineering Plasticity, chapter 4, Van Nostrand Reinhold Company, London (1973).

Google Scholar

[14] M. Bamberger and B. Prinz: Mater. Sci. Tech. Ser. Vol. 2-4 (1986), p.410.

Google Scholar