[1]
International Organization of Motor Vehicle Manufacturers. Production Statistics [Online]. Available: http: /www. oica. net/category/production-statistics.
Google Scholar
[2]
C. Yap. (2014, 23 January) 2013 Malaysian Market Report. Motor Trader.
Google Scholar
[3]
B. Ruffino and M.C. Zanetti, Reuse and Recycling of Automotive Paint Sludge: A Brief Overview., (2010).
Google Scholar
[4]
Z. Januri, N. A. Rahman, S. S. Idris, S. Matali, and S. F. A. Manaf, Yields Performance of Automotive Paint Sludge via Microwave Assisted Pyrolysis, in Applied Mechanics and Materials, 2014, pp.191-195.
DOI: 10.4028/www.scientific.net/amm.548-549.191
Google Scholar
[5]
M. J. Gerace, S. C. Gamboa, and Y. S. Landaburu, Method for treating paint sludge, ed: Google Patents, (1999).
Google Scholar
[6]
B. Ruffino, D. Dalmazzo, P. P. Riviera, E. Santagata, and M. C. Zanetti, Preliminary Performance Assessment of Asphalt Pavements with Paint Sludge from Automotive Industries, presented at the 3rd International Conference on Industrial and Hazardous Waste Managemen, Greece, (2012).
Google Scholar
[7]
M. J. Gerace, S. C. Gamboa, and Y. S. Landaburu, Removing water and/or organic solvent by drying the sludge without curing the polymer resin; decatalyzing to prevent curing by treatment with a base having a high ph; putty product can make sealants, rubbers, plastics, ed: Google Patents, (1999).
Google Scholar
[8]
A. Domínguez, Y. Fernández, B. Fidalgo, J. J. Pis, and J. A. Menéndez, Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge, Chemosphere, vol. 70, pp.397-403, (2008).
DOI: 10.1016/j.chemosphere.2007.06.075
Google Scholar
[9]
Q. Dong and Y. Xiong, Kinetics study on conventional and microwave pyrolysis of moso bamboo, Bioresource Technology, vol. 171, pp.127-131, (2014).
DOI: 10.1016/j.biortech.2014.08.063
Google Scholar
[10]
S. S. Lam, A. D. Russell, and H. A. Chase, Microwave pyrolysis, a novel process for recycling waste automotive engine oil, Energy, vol. 35, pp.2985-2991, (2010).
DOI: 10.1016/j.energy.2010.03.033
Google Scholar
[11]
A. A. Salema and F. N. Ani, Microwave induced pyrolysis of oil palm biomass, Bioresource Technology, vol. 102, pp.3388-3395, (2011).
DOI: 10.1016/j.biortech.2010.09.115
Google Scholar
[12]
Z. Abubakar, A. A. Salema, and F. N. Ani, A new technique to pyrolyse biomass in a microwave system: Effect of stirrer speed, Bioresource Technology, vol. 128, pp.578-585, (2013).
DOI: 10.1016/j.biortech.2012.10.084
Google Scholar
[13]
A. A. Salema and F. N. Ani, Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer, Journal of Analytical and Applied Pyrolysis, vol. 96, pp.162-172, (2012).
DOI: 10.1016/j.jaap.2012.03.018
Google Scholar
[14]
J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in Analytical Chemistry, R.A. Meyers, Ed., ed. Chichester: John Wiley & Sons Ltd, 2000, p.10815–10837.
Google Scholar