Vibration Control of Strain Gradient Nonlinear Micro-Cantilevers Using Piezoelectric Actuators

Article Preview

Abstract:

A closed-loop control algorithm is used for stabilization of a vibrating nonlinearstrain gradient micro Euler-Bernoulli cantilever beam usinglinear piezoelectric actuation.In this paper, the governing partial differential equation (PDE) of the nonlinear strain gradient beam with piezoelectric actuator is obtained. Galerkin projection method is utilized to reduce the system’s PDE equation of motion into a set of nonlinear ordinary differential equation (ODE) model. The nonlinear system is controlled by a robust linear controller which ensures the stability of the nonlinear system. Numerical simulations are investigated to demonstrate the effectiveness and performance of the designed control scheme.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

967-971

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Itik, M. U. Salamci, F. Demet Ulker, and Y. Yaman, Active Vibration Suppression of a Flexible Beam via Sliding Mode and H∞ Control, in Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on, (2005) 1240-1245.

DOI: 10.1109/cdc.2005.1582328

Google Scholar

[2] K. Farzad, Positioning control in micro-beams via electrostatic actuators and incomplete state feedback, Ms.C., Department of Mechanical Engineering, Sharif university of technology, (2012).

Google Scholar

[3] M. J. Shirazi, H. Salarieh, A. Alasty, and R. Shabani, Tip tracking control of a micro-cantilever Timoshenko beam via piezoelectric actuator, Journal of Vibration and Control, (2012).

DOI: 10.1177/1077546312447837

Google Scholar

[4] W. Zhang, G. Meng, and H. Li, Adaptive vibration control of micro-cantilever beam with piezoelectric actuator in MEMS, The International Journal of Advanced Manufacturing Technology, 28 (2006) 321-327.

DOI: 10.1007/s00170-004-2363-5

Google Scholar

[5] Q. Ma, and D. R. Clarke, Size dependent hardness of silver single crystals, Journal of Materials Research, 10 (1995) 853-863.

DOI: 10.1557/jmr.1995.0853

Google Scholar

[6] A. W. McFarland, J. S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics and Microengineering, 15 (2005) 1060–1067.

DOI: 10.1088/0960-1317/15/5/024

Google Scholar

[7] R. Vatankhah, M. H. Kahrobaiyan, A. Alasty, M. T. Ahmadian, Nonlinear forced vibration of strain gradient microbeams, Applied mathematical modeling, 37 (2013) 8363–8382.

DOI: 10.1016/j.apm.2013.03.046

Google Scholar

[8] D. Lam, F. Yang, A. Chong, J. Wang, and P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51 (2003) 1477-1508.

DOI: 10.1016/s0022-5096(03)00053-x

Google Scholar

[9] R. Vatankhah, A. Najafi, H. Salarieh, and A. Alasty, Boundary stabilization of non-classical micro-scale beams, Applied mathematical modeling, 37 (2013) 8709-8724.

DOI: 10.1016/j.apm.2013.03.048

Google Scholar

[10] R. Vatankhah, A. Najafi, H. Salarieh, and A. Alasty, Asymptotic decay rate of non-classical strain gradient Timoshenko micro-cantilevers by boundary feedback, Journal of Mechanical Science and Technology, 28 (2014) 1-9.

DOI: 10.1007/s12206-013-1127-2

Google Scholar

[11] A. Preumont, Mechatronics: dynamics of electromechanical and piezoelectric systems vol. 136: Springer, (2006).

Google Scholar

[12] D. Šiljak and D. Stipanović, Robust stabilization of nonlinear systems: the LMI approach, Mathematical Problems in Engineering, 6 (2000) 461-493.

DOI: 10.1155/s1024123x00001435

Google Scholar

[13] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory vol. 15. Phialdelphia, US: Society for Industrial Mathematics (1994).

DOI: 10.1137/1.9781611970777

Google Scholar