Thermal Annealing Effect on Active Layer Structure in All-Polymer Organic Solar Cells

Article Preview

Abstract:

The structural evolution of the components for the active layers of all-polymer solar cells was studied by DSC, X-ray diffraction and optical microscopy. It was found that polymer donor (PTQ1) and polymer acceptor (PNDIT2) form lamellar structures with layers oriented parallel and perpendicular to the substrate, respectively. All films reveal π-π stacking in the direction normal to the film. During thermal annealing the structure improvement occurs only for the donor component. In a PTQ1/ PNDIT2 blend, two components form individual lamellar phases with the texture similar to that of the pure polymers. Upon annealing, the structure of PNDIT2 was found to be disturbed whereas the structure of PTQ1 phase improves. The micro-phase separation occurring during annealing of the PTQ1/ PNDIT2 blend is accompanied by the formation of large spherulitic objects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

640-644

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nature Photonics 6, 591–595, (2012).

DOI: 10.1038/nphoton.2012.190

Google Scholar

[2] H. -Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu1, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature Photonics 3, 297–303, (2009).

DOI: 10.1038/nphoton.2009.192

Google Scholar

[3] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater. 6, 497, (2007).

DOI: 10.1038/nmat1928

Google Scholar

[4] C. R. McNeill and N. C. Greenham, Conjugated polymer blends for optoelectronics, Adv. Mater., 21, 3840-3850, (2011).

DOI: 10.1002/adma.200900783

Google Scholar

[5] E. J. Zhou, J. Z. Cong, Q. Z. Wei, K. Tajima, C. H. Yang, K. Hashimoto, All-polymer solar cells from perylene diimide based copolymers: Material design and phase separation control, Angew. Chem. Int. Ed. 50, 2799-2803, (2011).

DOI: 10.1002/anie.201005408

Google Scholar

[6] D. Mori, H. Benten, J. Kosaka, H. Ohkita, S. Ito, and K. Miyake, Polymer/polymer blend solar cells with 2. 0% efficiency developed by thermal purification of nanoscale-phase-separated morphology, ACS Applied Materials and Interfaces, vol. 3, no. 8, p.2924–2927, (2011).

DOI: 10.1021/am200624s

Google Scholar

[7] D. Mori, H. Benten, H. Ohkita, S. Ito, K. Miyake, Polymer/polymer blend solar cells improved by using high-molecular-weight fluorine-based copolymer as electron acceptor. ACS Appl. Mater. Interfaces 4, 3325, (2012).

DOI: 10.1021/am300623f

Google Scholar

[8] N. Zhou, H. Lin, S. J. Lou et al., Morphology-performance relationships in high-efficiency all-polymer solar cells, Advanced Energy Materials, vol. 4, no. 3, (2014).

Google Scholar

[9] Y. He, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, A high-mobility electron-transporting polymer for printed transistors, Nature, 457, 679–686, (2009).

DOI: 10.1038/nature07727

Google Scholar

[10] J. C. Blackesley, M. Schubert, R. Steyrleuthner, Z. H. Chen, A. Facchetti, D. Neher, Time-of-flight measurements and vertical transport in a high electron-mobility polymer, Appl. Phys. Lett. 99, 183310, (2011).

DOI: 10.1063/1.3657827

Google Scholar

[11] R. Steyrleuthner, R., M. Schubert, F. Jaiser, J. C. Blackesley, Z. H. Chen, A. Facchetti, D. Neher Bulk electron transport and charge injection in a high mobility n-type semiconducting polymer. Adv. Mater. 22, 2799 (2010).

DOI: 10.1002/adma.201000232

Google Scholar

[12] R. Steyrleuthner, M. Schubert, I. Howard, B. Klaumünzer, K. Schilling, Z. Chen, P. Saalfrank, F. Laquai, A. Facchetti, D. Neher, Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology, J. Am. Chem. Soc. 134, 18303, (2012).

DOI: 10.1021/ja306844f

Google Scholar