[1]
Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nature Photonics 6, 591–595, (2012).
DOI: 10.1038/nphoton.2012.190
Google Scholar
[2]
H. -Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu1, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature Photonics 3, 297–303, (2009).
DOI: 10.1038/nphoton.2009.192
Google Scholar
[3]
J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater. 6, 497, (2007).
DOI: 10.1038/nmat1928
Google Scholar
[4]
C. R. McNeill and N. C. Greenham, Conjugated polymer blends for optoelectronics, Adv. Mater., 21, 3840-3850, (2011).
DOI: 10.1002/adma.200900783
Google Scholar
[5]
E. J. Zhou, J. Z. Cong, Q. Z. Wei, K. Tajima, C. H. Yang, K. Hashimoto, All-polymer solar cells from perylene diimide based copolymers: Material design and phase separation control, Angew. Chem. Int. Ed. 50, 2799-2803, (2011).
DOI: 10.1002/anie.201005408
Google Scholar
[6]
D. Mori, H. Benten, J. Kosaka, H. Ohkita, S. Ito, and K. Miyake, Polymer/polymer blend solar cells with 2. 0% efficiency developed by thermal purification of nanoscale-phase-separated morphology, ACS Applied Materials and Interfaces, vol. 3, no. 8, p.2924–2927, (2011).
DOI: 10.1021/am200624s
Google Scholar
[7]
D. Mori, H. Benten, H. Ohkita, S. Ito, K. Miyake, Polymer/polymer blend solar cells improved by using high-molecular-weight fluorine-based copolymer as electron acceptor. ACS Appl. Mater. Interfaces 4, 3325, (2012).
DOI: 10.1021/am300623f
Google Scholar
[8]
N. Zhou, H. Lin, S. J. Lou et al., Morphology-performance relationships in high-efficiency all-polymer solar cells, Advanced Energy Materials, vol. 4, no. 3, (2014).
Google Scholar
[9]
Y. He, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, A high-mobility electron-transporting polymer for printed transistors, Nature, 457, 679–686, (2009).
DOI: 10.1038/nature07727
Google Scholar
[10]
J. C. Blackesley, M. Schubert, R. Steyrleuthner, Z. H. Chen, A. Facchetti, D. Neher, Time-of-flight measurements and vertical transport in a high electron-mobility polymer, Appl. Phys. Lett. 99, 183310, (2011).
DOI: 10.1063/1.3657827
Google Scholar
[11]
R. Steyrleuthner, R., M. Schubert, F. Jaiser, J. C. Blackesley, Z. H. Chen, A. Facchetti, D. Neher Bulk electron transport and charge injection in a high mobility n-type semiconducting polymer. Adv. Mater. 22, 2799 (2010).
DOI: 10.1002/adma.201000232
Google Scholar
[12]
R. Steyrleuthner, M. Schubert, I. Howard, B. Klaumünzer, K. Schilling, Z. Chen, P. Saalfrank, F. Laquai, A. Facchetti, D. Neher, Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology, J. Am. Chem. Soc. 134, 18303, (2012).
DOI: 10.1021/ja306844f
Google Scholar