Enhancement of Intrinsic Carrier Concentration in the Active Layer of Solar Cell Using Indium Nitride Quantum Dot

Article Preview

Abstract:

This paper presents the improvement of intrinsic carrier concentrations in the active layer of solar cell structure using Indium Nitride quantum dot as the active layer material. We have analyzed effective density of states in conduction band and valance band of the solar cell numerically using Si, Ge and InN quantum dot in the active layer of the solar cell structure in order to improve the intrinsic carrier concentration within the active layer of the solar cell. Then obtained numerical results were compared. From the comparison results it has been revealed that the application of InN quantum dot in the active layer of the device structure improves the effective density of states both in conduction band and in the valance band. Consiquently the intrinsic carrier concentration has been improved significently by using InN quantum dot in the solart cell structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

435-439

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Devabhaktuni, M. Alam, S. S. R. Depuru, R. C. Green II, D. Nims, and C. Near: Renewable and Sustainable Energy Reviews. Vol. 19 (2013), pp.555-564.

DOI: 10.1016/j.rser.2012.11.024

Google Scholar

[2] M. A. Rashid, A. Yusuf, M. A. Humayun, A. K. N. M. Al-Khateeb and S. Tamaki: American Journal of Applied Sciences, Vol. 10 (2013), pp.1345-1350.

Google Scholar

[3] A. M. Omer: Renewable and sustainable energy reviews, Vol. 12(9), (2008), pp.2265-2300.

Google Scholar

[4] A. Mahrane, M. Chikh, and A. Chikouche: Jordan Journal of Mechanical and Industrial Engineering, Vol. 4(1) (2010), pp.117-120.

Google Scholar

[5] N. Lior: Energy, Vol. 33(6) (2008), pp.842-857.

Google Scholar

[6] M. M. Hossain, M. A. Humayun, M. T. Hasan, A. G. Bhuiyan, A. Hashimoto and A. Yamamoto: IEICE transactions on electronics vol.  95(2) (2012), pp.255-261.

Google Scholar

[7] H. El Ghazi and A. Jorio: Communications in Theoretical Physics, 61(2) (2014), pp.253-256.

Google Scholar

[8] H. Tanaka, N, Morioka, S. Mori, J. Suda, and T. Kimoto: Journal of Applied Physics, vol. 115(5) (2014), p.053713.

Google Scholar

[9] S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy: Applied Physics Express, Vol. 7(3) (2014), p.032301.

DOI: 10.7567/apex.7.032301

Google Scholar

[10] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson: Chemical reviews, vol. 110 (11), pp.6873-6890.

Google Scholar

[11] R.B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester and D. L. Huffaker:  Applied Physics Letters, Vol. 91(24) (2007), pp.243115-243115.

DOI: 10.1063/1.2816904

Google Scholar

[12] S. M. Sze, and , K. K. Ng: Physics of semiconductor devices. (John Wiley & Sons, 2006).

Google Scholar