Effect of Sintering Atmosphere on the Electrical and Thermal Properties of Al-Doped ZnO Thin Films Prepared Using Inkjet Printing Method

Article Preview

Abstract:

Al-doped ZnO thin films were prepared by ink-jet printing and their electrical and thermal properties with different amounts of Al doping and sintering atmosphere were investigated. The XRD traces of films show the doped materials did not form additional crystalline phases with increasing amounts of Al doping. Electrical conductivity of film increased from 4.86 S/cm to 120.94 S/cm as the amounts of Al doping increased from 0 wt% to 4 wt%. However, the thermal conductivity decreased from 24 W/mK to 13 W/mK with increasing the Al doping from 0 wt% to 4 wt%. The electrical conductivity of film shows higher values sintered in vacuum (120.94 S/cm) compared to film sintered in air (114.1 S/cm).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

440-444

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Prathap, A. Suryanarayana Reddy, G. Ramachandra Reddy, R.W. Miles, K.T. Ramakrishna Reddy, Solar Energy Materials and Solar Cells, 94 (2010), 1434–1436.

DOI: 10.1016/j.solmat.2010.04.012

Google Scholar

[2] U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, H. Morkoç Journal of Applied Physics, 98 (2005), 041301-041301-103.

DOI: 10.1063/1.1992666

Google Scholar

[3] G. Gordillo, C. Calderon, Solar Energy Mater. Solar Cells, 69 (2001), 251–260.

Google Scholar

[4] R.G. Gordon, Materials Research Society Bulletin, 25 (2000), 52–57.

Google Scholar

[5] P. Nunes, D. Costa, E. Fortunato, R. Martins, Vacuum, 64 (2000), 293–297.

Google Scholar

[6] M. de la L. Olvera, H. Gomez, A. Maldonado, Solar Energy Materials and Solar Cells, 91 (2007), 1449–1453.

Google Scholar

[7] V. Cracium, J. Elders, J.G.E. Gardeniers, Applied Physic Letter, 65 (1994), 2963–2965.

Google Scholar

[8] F. Quaranta, A. Valentini, F.R. Rizzi, Journal Applied Physic, 74 (1993), 247–248.

Google Scholar

[9] Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, Journal Applied Physic, 72 (1992), 4203–4207.

Google Scholar

[10] A.J.C. Fiddes, K. Durose, A.W. Brinkman, Journal Crystal Growth, 159 (1996), 210–213.

Google Scholar

[11] K. Jong Lee, B. Ho Jun, T. Hoon Kim, J. Joung, Nanotechnology, 17 (2006), 2424–2428.

Google Scholar

[12] Jae K. Lee, Ue J. Lee, Myung-Ki Kim, Sang H. Lee, Kyung-Tae Kang, Thin Solid Films, 519(2011), 5649-5653.

Google Scholar

[13] Kyoung-Hwan Shin, Joonhyuk Cho, Jyongsik Jang, Hyun S. Jang, Eung S. Park, Kigook Song, Sung H. Kim, Organic Electronics, 13(2012), 715-720.

Google Scholar

[14] M. Morozova, P. Kluson, J. Krysa, P. Dzik, M. Vesely, O. Solcova, Sensors and Actuators B: Chemical, 160(2011), 371-378.

DOI: 10.1016/j.snb.2011.07.063

Google Scholar

[15] Zhiyun Zhang, Chonggao Bao, Wenjing Yao, Shengqiang Ma, Lili Zhang, Shuzeng Hou, Superlattices and Microstructures, 49(2011), 644-653.

Google Scholar

[16] Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, Y. H. Lin, Applied Surface Science, 257(2011), 3446-3450.

Google Scholar

[17] Christian Weigand, Ryan Crisp, Cecile Ladam, Tom Furtak, Reuben Collins, Jostein Grepstad, Helge Weman, Thin Solid Films, 545(2013), 124-129.

DOI: 10.1016/j.tsf.2013.07.052

Google Scholar

[18] B. G. Choi, I. H. Kim, D. H. Kim, K. S. Lee, T. S. Lee, B. Cheong, Y. J. Baik, W. M. Kim, Journal of the European Ceramic Society, 25(2005), 2161-2165.

DOI: 10.1016/j.jeurceramsoc.2005.03.023

Google Scholar

[19] K. F. Cai, E. Müller, C. Drašar, A. Mrotzek, Materials Science and Engineering: B, 104 (2003), 45-48.

Google Scholar

[20] H. Cheng, X. J. Xu, H. H. Hng, J. Ma Ceramics International, 35(2009), 3067-3072.

Google Scholar