[1]
Panday, Sudhakar et. al. Synthesis of nanocrystalline Co–Ni alloys by precursor approach and studies on their magnetic properties., Journal of Magnetism and Magnetic Materials, Science Direct, 2011. http: /www. sciencedirect. com.
DOI: 10.1016/j.jmmm.2011.04.006
Google Scholar
[2]
Skomski, R. et al. Magnetic localization in transition-metal nanowires,. Phys. Rev., B 62 (2000) 3900.
Google Scholar
[3]
Balela, M.D. Syntheses of Metallic Cobalt Nanoparticles and Nanowires by Electroless Deposition., Kyoto University Research Information Repository, 2011. http: /hdl. handle. net/2433/151979.
Google Scholar
[4]
Gubin, S. P., et. al. Magnetic Nanoparticles: Preparation, Structure and Properties, Russ. Chem. Rev., 74, 489 (2005).
Google Scholar
[5]
Kawamori, Makoto et al. Nickel Alloying Effect on Formation of Cobalt Nanoparticles and Nanowires via Electroless Deposition under a Magnetic Field,. Journal of the Electrochemical Society (2011), 159(2): E37-E44, 2011-(2012).
DOI: 10.1149/2.062202jes
Google Scholar
[6]
Schmuki, Patrikand Virtanen, Sannakaisa(Editors). Electrochemistry at the Nanoscale. New York: Springer Science, 2009. Print.
Google Scholar
[7]
Kawamori, Makoto et al. Electrochemical Study on the Synthesis Process of Co-Ni Alloy Nanoparticles via Electroless Deposition,. Journal of The Electrochemical Society, 157 (5) E92-E97, 2010, The Electrochemical Society.
DOI: 10.1149/1.3352893
Google Scholar
[8]
Kawamori, Makoto et al. Formation of Nickel Nanowires ViaElectroless Deposition Under a Magnetic Field,. Journal of The Electrochemical Society, 158 (8) E79-E83, 2011, The Electrochemical Society.
DOI: 10.1149/1.3596703
Google Scholar
[9]
Zhang, Liying ; Lan, Tianmin; Wang, Wei, Jian Liangmin; Zhi, Yangand Zhi, Yafei Zhang. Template-free Synthesis of One-dimensional Cobalt Nanostructures by Hydrazine Reduction Route,. Nanoscale Research Letter, 6 , 2011, Springer Open Journal.
DOI: 10.1007/s11671-010-9807-7
Google Scholar
[10]
Zhang, Ya-jing ; Zhang, Ying ; Wang, Zhen-hua; Li, Da; Cui, Tie-yu ; Liu, Wei and Zhang, Zhi-dong . Controlled Synthesis of Cobalt Flowerlike Architectures by a Facile Hydrothermal Route,. European Journal of Inorganic Chemistry, 2733-2738, (2008).
DOI: 10.1002/ejic.200800137
Google Scholar
[11]
Petit, C.; Wang, Z. L. and Pileni, M. P. Seven-Nanometer Hexagonal Close Packed Cobalt Nanocrystals for High-Temperature Magnetic Applications through a Novel Annealing Process,. Journal of Physical Chemistry, 109(12) 15309-15316, American Chemical Society. q.
DOI: 10.1021/jp052487+
Google Scholar
[12]
R. Palmer and M. Ladd. Structure Determination by X-ray Crsytallography: Analysis by X-rays and Neutrons 5thEd. Ch. 12. Springer Science and Business Media, New York, (2013).
Google Scholar
[13]
Balela, M.D., et. al. Fabrication of Cobalt Nanowires by Electroless Deposition under External Magnetic Field,. Journal Of The Electrochemical Society (2011), 158(4): D210-d216, (2011).
DOI: 10.1149/1.3545065
Google Scholar
[14]
Lackner, Maximillian; et. al. Combustion Synthesis: Novel Route to Novel Materials. Chapter 18, Bentham Science, Dubai, (2010).
Google Scholar
[15]
Glaspell, G; et. al. Formation of Cobalt Nitrate Hydrate, Cobalt Oxide, and Cobalt Nanoparticles Using Laser Vaporization Controlled Condensation., Journal of Physical Chemistry, 108: 9604-9607, 2004, American Chemical Society.
DOI: 10.1021/jp0370831
Google Scholar
[16]
Han, S. et al. Characterization of Ni nanowires after annealing., Materials Letters, Science Direct, 2006. http: /www. sciencedirect. com.
Google Scholar
[17]
International Center for Diffraction Data. JCPDS 04-0850. Prentice Hall, 2004. http: /www. pearson-studium. de.
Google Scholar