[1]
Adityam M. effect of high speed machining on surface topography of titanium alloy, (2003).
Google Scholar
[2]
Mohammed T. Hayajneh, Montasser S. Tahat, Joachim BluhmC, A Study of the Effects of Machining Parameters on the Surface Roughness in the End-Milling Process. Jordan Journal of Mechanical and Industrial Engineering. Volume 1, Number 1, (1), pp.1-5, (2007).
Google Scholar
[3]
Shaw M.C., Metal cutting principles. Oxford university press, oxford NY. (1984).
Google Scholar
[4]
Darwish, S. M, The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel super alloy. Journal of Material Processing Technology. 97, pp.10-18. (2000).
DOI: 10.1016/s0924-0136(99)00365-9
Google Scholar
[5]
Kopa C, J., Bahor, M., Sokovi C, M., Optimal machining parameters for achieving the desired surface roughness in fine turning of cold preformed steel work-pieces. International Journal of Machine Tools Manufacturing, vol. 42, pp.707-716, (2002).
DOI: 10.1016/s0890-6955(01)00163-8
Google Scholar
[6]
S. P. Dwivedi, Sudhir Kumar and Ajay Kumar Effect of turning parameters on surface roughness of A356/5% SiC composite produced by electromagnetic stir casting, Journal of Mechanical Science and Technology vol. 26(12), , pp.3973-3979, (2012).
DOI: 10.1007/s12206-012-0914-5
Google Scholar
[7]
Feng C. X. (jack) and Wang X., Development of empirical models for surface roughness prediction in finish turning, Journal of Advanced Manufacturing Technology, Volume 20, pp.348-356. (2002).
DOI: 10.1007/s001700200162
Google Scholar
[8]
Suresh P.V. s., Rao P. V. and Deshmukh S.G., genetic algorithm approach for optimization of surface roughness prediction model, international journal of machine tools and manufacture, Volume 42, pp.348-356, (2002).
DOI: 10.1016/s0890-6955(02)00005-6
Google Scholar
[9]
Davis, ROptimization of Surface Roughness in Wet Turning Operation Of En24 Steel, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), Vol. 2, Issue 3, pp.28-35, (2012).
Google Scholar
[10]
B. Sidda Reddy, J. Suresh Kumar, K. Vijaya Kumar Reddy, Prediction of Surface Roughness in Turning Using Adaptive Neuro-Fuzzy Inference System. Jordan Journal of Mechanical and Industrial Engineering. Volume 3, (4), p.252 – 259, (2009).
Google Scholar
[11]
Zhong Z. W., Khoo L. P. and Han S. T., prediction of surface roughness of turned surface using neutral network, International Journal of Advanced Manufacturing Technology, Volume 28, pp.688-693, (2006).
DOI: 10.1007/s00170-004-2429-4
Google Scholar
[12]
Α.Κ. Baldoukas Experimental investigation of the effect of cutting depth, tool rake angle and workpiece material type on the main cutting force during a turning process. 3rd International Conference on Manufacturing Engineering (ICMEN), (2008).
Google Scholar
[13]
Akash Rathi, AbhishekMahor, Rajeev Ranjan, AbhishekGajbhiye, A. Rehman, C M Krishna, Characterization of Chip Morphology for Aluminum Metal Matrix Composites in End Milling Machining,. Universal Journal of Mechanical Engineering, (7) (2), pp.240-247, (2014).
DOI: 10.13189/ujme.2014.020705
Google Scholar
[14]
Mason D. Morehead and Yong Huang, Chip morphology characterization and modeling in machining hardened 52100 steels,. Machining Science and Technology, 11, p.335–354, (2007).
Google Scholar
[15]
A. Pramanik, L.C. Zhang, J.A. Arsecularatne Machining of metal matrix composites: Effect of ceramic particles on residual stress, surface roughness and chip formation, International Journal of Machine Tools & Manufacture, 48, p.1613–1625, (2008).
DOI: 10.1016/j.ijmachtools.2008.07.008
Google Scholar