[1]
Z.H. Zhang, C.S. Cheung, T.L. Chan, C.D. Yao, Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with Euro V diesel fuel and fumigation methanol, . Atmospheric Enviroment 44 (2010) 1054–1061.
DOI: 10.1016/j.atmosenv.2009.12.017
Google Scholar
[2]
V.G. Milt, M.L. Pissarello, E.E. Miró, C.A. Querini, Abatement of diesel-exhaust pollutants: NOx storage and soot combustion on K/La2O3 catalysts, Applied Catalysis B: Environmental 41 (2003) 397–414.
DOI: 10.1016/s0926-3373(02)00175-3
Google Scholar
[3]
S.C. Barman, N. Kumar, R. Singh, G.C. Kisku, A.H. Khan, M.M. Kidwai, (2010) Assessment of urban air pollution and it's probable health impact, Journal of Environmental Biology 31 (2010) 913-920.
Google Scholar
[4]
B.K. Yun, M.Y. Kim, Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases, Applied Thermal Engineering 50 (2013) 152-158.
DOI: 10.1016/j.applthermaleng.2012.05.039
Google Scholar
[5]
A. Keskin, M. Gürü, D. Altıparmak, Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission, Bioresources Technology 14 (2008) 6434-6438.
DOI: 10.1016/j.biortech.2007.11.051
Google Scholar
[6]
G.R. Kannan, R. Karvembu, R. Anand, Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel, Applied Energy 88 (2011) 3694–3703.
DOI: 10.1016/j.apenergy.2011.04.043
Google Scholar
[7]
A. Keskin, M. Gürü, D. Altıparmak, Biodiesel production from tall oil with synthesized Mn and Ni based additives: Effects of the additives on fuel consumption and emissions, Fuel 86 (2007) 1139–1143.
DOI: 10.1016/j.fuel.2006.10.021
Google Scholar
[8]
J.P.A. Neeft, M. Makkee, J.A. Moulijn, Diesel particulate emission control, Fuel Processing Technology 47 (1996) 1–69.
DOI: 10.1016/0378-3820(96)01002-8
Google Scholar
[9]
M.S. Grabowski, R.L. McCormick, Combustion of fat and vegetable oil derived fuels in diesel engines, Progress in Energy and Combustion Science 24 (1998) 125–164.
DOI: 10.1016/s0360-1285(97)00034-8
Google Scholar
[10]
C.Y. Choi, R.D. Reitz, An experimental study on the effects of oxygenated fuel blends and multiple injection strategies on DI diesel engine emissions, Fuel 78 (1999) 1303–1317.
DOI: 10.1016/s0016-2361(99)00058-7
Google Scholar
[11]
C. Beatrice, C. Bertoli, Del N. Giacomo, M. Migliaccio, Potentiality of oxygenated synthetic fuel and reformulated fuel on emissions from a modern DI diesel engine, SAE Technical Series 1999-01-3595.
DOI: 10.4271/1999-01-3595
Google Scholar
[12]
J.S. Basha, R.B. Anand, An experimental study in a CI engine using nanoadditive blended water-diesel emission fuel, International Journal of Green Energy 8 (2011) 332–348.
DOI: 10.1080/15435075.2011.557844
Google Scholar
[13]
K. Skalska, J.S. Miller, S. Ledakowicz, Trends in NOx abatement: A review, Science of the Total Environment 408 (2010) 3976–3989.
DOI: 10.1016/j.scitotenv.2010.06.001
Google Scholar
[14]
K.R. Patil, S.S. Thipse, Experimental investigation of CI engine combustion, performance and emissions in DEE–kerosene–diesel blends of high DEE concentration, Energy Conversion and Management 89 (2015) 396–408.
DOI: 10.1016/j.enconman.2014.10.022
Google Scholar
[15]
T. Ozgur, G. Tuccar, E. Uludamar, A.C. Yilmaz, C. Güngör, M. Ozcanli, H. Serin, K. Aydın, Effect of nanoparticule additives on NOx emissions of diesel fueled compression ignition engine, 6 th International Ege Energy Symposium & Exhibition June 28-30, 2012 Izmir, Turkey.
DOI: 10.1504/ijgw.2015.070051
Google Scholar