[1]
Healey, Anthony J., Lienard, David. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE Journal of Oceanic Engineering, vol 18 (3), pp.327-339, (1993).
DOI: 10.1109/joe.1993.236372
Google Scholar
[2]
D.J. Stilwell, B.E. Bishop, Platoons of underwater vehicles, IEEE Control Systems Magazine, vol. 20 (6), pp.45-52, (2000).
Google Scholar
[3]
V. Kh. Pshikhopov, M. Y. Medvedev, and B. V. Gurenko, Homing and Docking Autopilot Design for Autonomous Underwater Vehicle, Applied Mechanics and Materials. Vols. 490-491, pp.700-707, 2014, doi: 10. 4028/www. scientific. net/ AMM. 490-491. 700.
DOI: 10.4028/www.scientific.net/amm.490-491.700
Google Scholar
[4]
Grace, David, et al. CAPANINA—communications from aerial platform networks delivering broadband information for all., Proceedings of the 14th IST Mobile and Wireless and Communications Summit (2005).
Google Scholar
[5]
Pavlushenko M., Evstaf'ev G., Makarenko G. Bespilotnye letatel'nye apparaty: istoriya, primenenie, ugroza rasprostraneniya i perspektivy razvitiya [Unmanned aerial vehicles: history, application, threat of distribution and prospect of development], Nauchnye zapiski PIR-tsentra, #2(26), (2004).
Google Scholar
[6]
V. Pshikhopov, M. Medvedev, V. Kostjukov, R. Fedorenko, B. Gurenko, V. Krukhmalev, Airship autopilot design, SAE Technical Paper 2011-01-2736, 2011, doi: 10. 4271/2011-01-2736.
DOI: 10.4271/2011-01-2736
Google Scholar
[7]
Pshikhopov, V. Kh., Medvedev, M. Yu., Gaiduk, A.R., Gurenko, B.V., Control system design for autonomous underwater vehicle, Proceedings of 2013 IEEE Latin American Robotics Symposium, LARS 2013, pp.77-82, doi: 10. 1109/LARS. 2013. 61.
DOI: 10.1109/lars.2013.61
Google Scholar
[8]
Pshikhopov, V.K., Fedotov, A.A., Medvedev, M.Y., Medvedeva, T.N. & Gurenko, B.V. 2014, Position-trajectory system of direct adaptive control marine autonomous vehicles, 2014 the 4th International Workshop on Computer Science and Engineering - Summer, WCSE (2014).
Google Scholar
[9]
Pshikhopov, V. Kh., Ali, A.S., Hybrid motion control of a mobile robot in dynamic environments, 2011, Proceedings of IEEE International Conference on Mechatronics, ICM 2011, p.540 – 545, doi: 10. 1109/ICMECH. 2011. 5971345.
DOI: 10.1109/icmech.2011.5971345
Google Scholar
[10]
V. Kh. Pshikhopov, M. Y. Medvedev, Control of Mobile Objects in Definite and Indefinite Environments, Moscow, 2011, ISBN 978-5-02-037509-3. [in Russian].
Google Scholar
[11]
M Won, SB Choi, JK Hedrick, Air-to-fuel ratio control of spark ignition engines using Gaussian network sliding control, IEEE transactions on control systems technology, vol. 6, no. 5, pp.678-687, (1998).
DOI: 10.1109/87.709504
Google Scholar
[12]
P. Tunestål, Optimal control of HCCI, Optimization and Optimal Control in Automotive Systems, pp.291-299, doi: 10. 1007/978-3-319-05371-4_17.
DOI: 10.1007/978-3-319-05371-4_17
Google Scholar
[13]
Beresnev M.A. Optimizatsiya ugla operezheniya zazhiganiya dlya dostizheniya maksimal'nogo krutyashchego momenta dvigatelya vnutrennego sgoraniya s pomoshch'yu binarnogo topliva [Optimization of a corner of an advancing of ignition for achievement of the maximum torque of an internal combustion engine by means of binary fuel], Izvestiya YuFU. Tekhnicheskie nauki, #1. pp.33-38, (2012).
Google Scholar
[14]
Wallington, T. J., E. W. Kaiser, and J. T. Farrell. Automotive fuels and internal combustion engines: a chemical perspective., Chemical Society Reviews 35. 4 (2006): 335-347.
DOI: 10.1039/b410469m
Google Scholar
[15]
Beresnev M., Beresnev A., Using Mix of Gasoline and Liquefied Petroleum Gas for Lower Emissions and Greater Torque, SAE technical paper #2013-01-1151, 2013, doi: 10. 4271/2013-01-1151.
DOI: 10.4271/2013-01-1151
Google Scholar
[16]
Beresnev M., Beresnev A. Control of spark ignition IC engines operating on alternative fuel mixtures, proceedings of 19th IFAC World Congress, Volume # 19, Part# 1, pp.6289-6294, 2014, doi: 10. 3182/20140824-6-ZA-1003. 00351.
DOI: 10.3182/20140824-6-za-1003.00351
Google Scholar