[1]
T. Akar, A. S. Ozcan, S. Tunali, A. Ozcan, Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis: Estimation of equilibrium, thermodynamic and kinetic parameters, Bioresource Technology 99 (2008) 3057-3065.
DOI: 10.1016/j.biortech.2007.06.029
Google Scholar
[2]
P. Verma, D. Madamwar, Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens, World J. Microbiol. Biotechnol. 19 (2003) 615-618.
Google Scholar
[3]
O. Hamdaoui, Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns, J. Hazard. Mater. 38 (2) (2006) 293-303.
DOI: 10.1016/j.jhazmat.2006.04.061
Google Scholar
[4]
B. H. Hameed, Equilibrium and kinetic studies of methyl violet sorption by agricultural waste, J. Hazard. Mater. 154 (2008) 204-212.
DOI: 10.1016/j.jhazmat.2007.10.010
Google Scholar
[5]
V. Vimonses, S. Lei, B. Jin, C. W. K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J. 148 (2009) 354-364.
DOI: 10.1016/j.cej.2008.09.009
Google Scholar
[6]
Y, Yang, G. Wang, B. Wang, Z. Li, X. Jia, Q. Zhou, Y. Zhao, Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: Kinetic study, equilibrium isotherm and artificial neural network modeling, Bioresource Technology 102 (2011).
DOI: 10.1016/j.biortech.2010.08.125
Google Scholar
[7]
A. B. Santos, F. J. Cervantes, J. B. Lier, Review paper on current technologies for decolouriza- tion of textile wastewaters: perspectives for anaerobic biotechnology, Biores. Technol. 98 (2007) 2369-2385.
DOI: 10.1016/j.biortech.2006.11.013
Google Scholar
[8]
S. J. Kim, M. Shoda, Purification and characterization of novel peroxidase from Geotrichum candidum DEC-1 involved in decolorization of dyes, Appl. Environ. Microbiol. 65 (1999) 1029-1035.
DOI: 10.1128/aem.65.3.1029-1035.1999
Google Scholar
[9]
Tamer Akar, Melike Divriklioglu, Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies, Bioresource Technology 101 (2010) 7271-7277.
DOI: 10.1016/j.biortech.2010.04.044
Google Scholar
[10]
S. Saygideger, O. Gulnaz, E. S. Istifli, N. Yucel, Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment, Journal of Hazardous Materials B126 (2005) 96-104.
DOI: 10.1016/j.jhazmat.2005.06.012
Google Scholar
[11]
R. Kumar, R. Ahmad, Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW), Desalination 265 (2011) 112-118.
DOI: 10.1016/j.desal.2010.07.040
Google Scholar
[12]
V. C. Srivastava, M. M. Swamy, I. D. Mall, B. Prasad, I. M. Mishra, Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics, Colloids and Surfaces A: Physicochem. Eng. Aspects 272 (2006).
DOI: 10.1016/j.colsurfa.2005.07.016
Google Scholar
[13]
S. Chowdhury, S. Chakraborty, P. Saha, Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder, Colloids and Surfaces B: Biointerfaces 84 (2011) 520-527.
DOI: 10.1016/j.colsurfb.2011.02.009
Google Scholar
[14]
I. D. Mall, V. C. Srivastava, N. K. Agarwal, Adsorptive removal of Auramine-O: Kinetic and equilibrium study, Journal of Hazardous Materials 143 (2007) 386-395.
DOI: 10.1016/j.jhazmat.2006.09.059
Google Scholar
[15]
Shaobin Wang, Huiting Li, Kinetic modelling and mechanism of dye adsorption on unburned carbon, Dyes and Pigments 72 (2007) 308-314.
DOI: 10.1016/j.dyepig.2005.09.005
Google Scholar