[1]
Qingxi Tong, Bing Zhang, Lanfen Zhen, Hyperspectral remote sensing - principle, technique and application, Higher Education Press, (2006).
Google Scholar
[2]
Tian Han, Goodenough, D. G, Nonlinear feature extraction of hyperspectral data based on locally linear embedding, Geoscience and Remote Sensing Symposium, 25(2005) 1237 - 1240.
DOI: 10.1109/igarss.2005.1525342
Google Scholar
[3]
Ma, L., Crawford, M.M., Tian, J. W, Anomaly detection for hyperspectral images based on robust locally linear embedding, Infrared Millimeter Terahertz Waves 31(2010) 753–762.
DOI: 10.1007/s10762-010-9630-3
Google Scholar
[4]
A. N. Gorban, A. Zinovyev, Principal manifolds and graphs in practice: from molecular biology to dynamical systems, International Journal of Neural Systems, 20 (2010) 219-232.
DOI: 10.1142/s0129065710002383
Google Scholar
[5]
Gabriel Peyré, Manifold models for signals and images, Computer Vision and Image Understanding, 113(2009) 249-260.
DOI: 10.1016/j.cviu.2008.09.003
Google Scholar
[6]
Tenenbaum, J., V. Silva, et al., A global geometric framework for nonlinear dimensionality reduction, science, 290 (2000) 2319-2323.
DOI: 10.1126/science.290.5500.2319
Google Scholar
[7]
Roweis, S. and L. Saul, Nonlinear dimensionality reduction by locally linear embedding, science, 290 (2000) 2323-2326.
DOI: 10.1126/science.290.5500.2323
Google Scholar
[8]
Sohn, Y., E. Moran, and F. Gurri, Deforestation in north-central Yucatan (1985-1995): Mapping secondary succession of forest and agricultural land use in Sotuta using the cosine of the angle concept, Photogrammetric Engineering and Remote Sensing, 65 (1999).
Google Scholar
[9]
Bachmann, C., T. Ainsworth, et al., Exploiting manifold geometry in hyperspectral imagery , IEEE Transactions on Geoscience and Remote Sensing, 43(2005) 441-454.
DOI: 10.1109/tgrs.2004.842292
Google Scholar
[10]
R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 2nd ed., Academic Press, San Diego, (1997).
Google Scholar
[11]
Angelopoulou E, Lee S W, Bajcsy R. Spectral gradient: A material descriptor invariant to geometry and incident illumination, Proceedings of International Conference on Computer Vision, (1999) 861-867.
DOI: 10.1109/iccv.1999.790312
Google Scholar
[12]
Reed, I. and X. Yu, Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Transactions on Acoustics, Speech and Signal Processing, 38 (1990) 1760-1770.
DOI: 10.1109/29.60107
Google Scholar