[1]
A.I. Galushkin, Some historical aspects of the development of the element base of computer systems with massive parallelism, Neurocomputer 1 (2000) 68-82. (In Russian).
Google Scholar
[2]
J. Kirsanov, Digital neurocomputers Architecture and circuit design, Kazan State, 1995, p.131. (In Russian).
Google Scholar
[3]
V. Mereuta, P. Dašić, S. Ciortan,L. Palaghian, Assessment of the influence of surface processing on fatigue damage using artificial neural networks. Journal of Research and Development in Mechanical Industry 4 (1) (2012) 11-20.
Google Scholar
[4]
A.I. Vlasov, Neural network implementation of microprocessor systems, active acoustic and vibration protection, Neurocomputers 1 (2000) 40-44. (In Russian).
Google Scholar
[5]
V.T. Portman, V.S. Chapsky, Y. Shneor, Workspace of parallel kinematics machines with minimum stiffness limits: Collinear stiffness value based approach, Mechanism and Machine Theory 49 (2012) 67-86.
DOI: 10.1016/j.mechmachtheory.2011.11.002
Google Scholar
[6]
L. Carbonari, M. Callegari, G. Palmieri, M.C. Palpacelli, A new class of reconfigurable parallel kinematic machines, Mechanism and Machine Theory 79 (2014) 173-183.
DOI: 10.1016/j.mechmachtheory.2014.04.011
Google Scholar
[7]
A. Martini, M. Troncossi, M. Carricato, A. Rivola, Static balancing of a parallel kinematics machine with Linear-Delta architecture: theory, design and numerical investigation, Mechanism and Machine Theory 90 (2015) 128-141.
DOI: 10.1016/j.mechmachtheory.2015.03.003
Google Scholar
[8]
A. Olarra, J.M. Allen, D.A. Axinte, Experimental evaluation of a special purpose miniature machine tool with parallel kinematics architecture: Free leg hexapod, Precision Engineering 38(3) (2014) 589-604.
DOI: 10.1016/j.precisioneng.2014.02.009
Google Scholar
[9]
J. Dong, W. Ma, Sufficient conditions for global attractivity of a class of neutral Hopfield-type neural networks, Neurocomputing 153 (2015) 89-95.
DOI: 10.1016/j.neucom.2014.11.049
Google Scholar
[10]
W. -H. Chen, S. Luo, X. Lu, Multistability in a class of stochastic delayed Hopfield neural networks, Neural Networks 68 (2015) 52-61.
DOI: 10.1016/j.neunet.2015.04.010
Google Scholar
[11]
M. Glesner, W. Pöchmüller, Neurocomputers: An overview of neural networks in VLSI, Chapman Hall, London, 1994, p.281.
Google Scholar
[12]
J.A. McDonald, Neurocomputers solving basic boundary problems, Microelectronics Journal 24 (4) (1993) 293-297.
DOI: 10.1016/0026-2692(93)90030-i
Google Scholar
[13]
V D. Sánchez, S. Sloat, J. Guerrero, D. Shullo, M. Lefebvre, The design of a real-time neurocomputer based on RBF networks, Neurocomputing 20 (1-3) (1998) 111-114.
DOI: 10.1016/s0925-2312(98)00023-x
Google Scholar
[14]
P.C. Treleaven, Neurocomputers, Neurocomputing 1 (1) (1989) 4-31.
Google Scholar
[15]
S. Kovalevskyy, P. Dašić, Y. Hmelevaya, Homogeneous neural networks at the cellular automata for modeling acupressure thermite mixture. in: Proceedings of the Menadžment, sport i turizam (MASTA-2014); Banja Luka, Bosnia and Herzegovina, 2014: pp.12-20.
Google Scholar