Numerical Investigation of Thermal Stresses in Surface Layer of Si3N4 Ceramics in Laser Processing

Article Preview

Abstract:

The laser processing has the ability for effective machining of ceramic materials because of high energy beam acting on a very small area. The stress-strain state of surface layer of Si3N4 ceramics in laser processing was investigated with the use of finite element method to compute the temperature and stress fields. The effect of heat flow on thermal stresses was discussed in terms of the results of the numerical experiment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-108

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.N. Samant, N.B. Dahotre, Laser machining of structural ceramics – A review, Journal of the European Ceramic Society 29 (2009) 969-993.

DOI: 10.1016/j.jeurceramsoc.2008.11.010

Google Scholar

[2] V. Kuzin, S. Grigoriev, M. Fedorov, M. Portnoy, V. Ermolin Surface Modification of Zirconia (Y-TZP) Ceramics Induced by Pulsed Laser Machining, Applied Mechanics and Materials 752-753 (2015) 481-484.

DOI: 10.4028/www.scientific.net/amm.752-753.481

Google Scholar

[3] V.V. Kuzin, S.N. Grigor'ev, V.N. Ermolin, Stress Inhomogeneity in a Ceramic Surface Layer under Action of an External Load. Part 2. Effect of Thermal Loading, Refractories and Industrial Ceramics 54 (2014) 497-501.

DOI: 10.1007/s11148-014-9641-z

Google Scholar

[4] A. Bellosi, F. Monteverde, S. Botti, S. Martelli, Development and characterization of nanophase Si3N4-based ceramics, Materials Science Forum 235-238 (1997) 255-260.

DOI: 10.4028/www.scientific.net/msf.235-238.255

Google Scholar

[5] P.P. Shukla, J. Lawrence, Surface characterization and compositional evaluation of a fibre laser processed silicon nitride (Si3N4) engineering ceramic, Lasers in Engineering 20 (5-6) (2010) 359-380.

Google Scholar

[6] P.P. Shukla, J. Lawrence, Investigation of temperature distribution during CO2 laser and fibre laser processing of a Si3N4 engineering ceramic by means of a computational and experimental approach, Lasers in Engineering 27 (3-4) (2014) 135-160.

Google Scholar

[7] X. Tian, F. Li, P. Wang, L. Wang, X. Tang, X. Simulation of temperature field for Si3N4 ceramics during laser assisted micro-detonation machining with striking arc, Zhongguo Jixie Gongcheng China Mechanical Engineering 24 (19) (2013) 2557-2561.

Google Scholar

[8] X. Dong, Y.C. Shin, Chapter 9. 10 - Laser machining and laser-assisted machining of ceramics, in: Comprehensive Materials Processing. Elsevier, Oxford, 2014, pp.219-234.

DOI: 10.1016/b978-0-08-096532-1.00908-0

Google Scholar

[9] J. -H. Eom, Y. -W. Kim, S. Raju, Processing and properties of macroporous silicon carbide ceramics: A review. Journal of Asian Ceramic Societies 1 (3) (2013) 220-242.

DOI: 10.1016/j.jascer.2013.07.003

Google Scholar

[10] R. Gadow, F. Kern, Chapter 2. 06 - Advanced manufacturing of hard ceramics, in: Comprehensive Hard Materials, Vol. 2: Ceramics, Elsevier, Oxford, 2014, pp.207-230.

DOI: 10.1016/b978-0-08-096527-7.00025-8

Google Scholar

[11] J. Kriegesmann, Chapter 2. 04 - Processing of Silicon Carbide-Based Ceramics, in: Comprehensive Hard Materials, Vol. 2: Ceramics, Elsevier, Oxford, 2014, pp.89-175.

DOI: 10.1016/b978-0-08-096527-7.00023-4

Google Scholar

[12] A.E. Pasto, 2. 03 - Synthesis/processing of Silicon Nitride ceramics, in: Comprehensive Hard Materials, Vol. 2: Ceramics, Elsevier, Oxford, 2014, pp.73-88.

DOI: 10.1016/b978-0-08-096527-7.00022-2

Google Scholar

[13] P.P. Shukla, J. Lawrence, The influence of brightness during laser surface treatment of Si3N4 engineering ceramics, Optics and Lasers in Engineering 50 (12) (2012) 1746-1751.

DOI: 10.1016/j.optlaseng.2012.07.006

Google Scholar

[14] P. Dašić, Comparative analysis of different regression models of the surface roughness in finishing turning of hardened steel with mixed ceramic cutting tools, Journal of Research and Development in Mechanical Industry 5 (2) (2013) 101-180.

Google Scholar

[15] P. Dašić, Research of processed surface roughness for turning hardened steel by means of ceramic cutting tools, in: Proceedings of the 2nd World Tribology Congress (WTC-2001), Österreichische Tribologische Gesellschaft (ÖTG) – The Austrian Tribology Society, Vienna, 2001: pp.1-6.

Google Scholar

[16] S.N. Grigor'ev, V. I. Myachenkov, V. V. Kuzin, Automated thermal-strength calculations of ceramic cutting plates, Russian Engineering Research 31 (2011) 1060-1066.

DOI: 10.3103/s1068798x11110086

Google Scholar

[17] V. Kuzin, S. Grigoriev, Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material, Applied Mechanics and Materials 486 (2014) 32-35.

DOI: 10.4028/www.scientific.net/amm.486.32

Google Scholar

[18] H. -L. Hu, Y. -P. Zeng, Y. -F. Xia, D. -X. Yao, K. -H. Zuo, J. Günster, J.G. Heinrich, Rapid fabrication of porous Si3N4/SiC ceramics via nitridation of silicon powder with ZrO2 as catalyst, Ceramics International 40 (5) (2014) 7579-7582.

DOI: 10.1016/j.ceramint.2013.11.098

Google Scholar

[19] S. Lafon-Placette, K. Delbé, J. Denape, M. Ferrato, Tribological characterization of silicon carbide and carbon materials, Journal of the European Ceramic Society 35 (4) (2015) 1147-1159.

DOI: 10.1016/j.jeurceramsoc.2014.10.038

Google Scholar

[20] K. -Y. Lim, Y. -W. Kim, K. Joo Kim, Mechanical properties of electrically conductive silicon carbide ceramics, Ceramics International 40 (7) (2014) 10577-10582.

DOI: 10.1016/j.ceramint.2014.03.036

Google Scholar

[21] F. Mubarok, N. Espallargas, Tribological behaviour of thermally sprayed silicon carbide coatings, Tribology International 85 (2015) 56-65.

DOI: 10.1016/j.triboint.2014.11.027

Google Scholar