[1]
S. Kurama, I. Schulz, M. Herrmann, Wear properties of α- and α / β-SiAlON ceramics obtained by gas pressure sintering and spark plasma sintering, Journal of the European Ceramic Society 31 (2011) 921-930.
DOI: 10.1016/j.jeurceramsoc.2010.11.010
Google Scholar
[2]
V.V. Kuzin, Effectiveness of the nitride ceramic cutting tools in machining the gray irons, Russian Engineering Research 24 (2004) 21-27.
Google Scholar
[3]
V.V. Kuzin, S.N. Grigoriev, and M. Yu. Fedorov, Role of the thermal factor in the wear mechanism of ceramic tools. Part 2: Microlevel, Journal of Friction and Wear 36 (2015) 40-44.
DOI: 10.3103/s1068366615010079
Google Scholar
[4]
L.D. Laude, Ch. Ogeret, A. Jadin, K. Kolev, Excimer laser ablation of Y-SiAlON, Applied Surface Science 127-129 (1998) 848-851.
DOI: 10.1016/s0169-4332(97)00754-x
Google Scholar
[5]
V.V. Kuzin, S.N. Grigor'ev, V.N. Ermolin, Stress Inhomogeneity in a Ceramic Surface Layer under Action of an External Load. Part 2. Effect of Thermal Loading, Refractories and Industrial Ceramics 54 (2014) 497-501.
DOI: 10.1007/s11148-014-9641-z
Google Scholar
[6]
S.N. Grigor'ev, V.I. Myachenkov, V.V. Kuzin, Automated thermal-strength calculations of ceramic cutting plates, Russian Engineering Research 31 (2011) 1060-1066.
DOI: 10.3103/s1068798x11110086
Google Scholar
[7]
V. Kuzin, S. Grigoriev, Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material, Applied Mechanics and Materials 486 (2014) 32-35.
DOI: 10.4028/www.scientific.net/amm.486.32
Google Scholar
[8]
H. -G. An, Y. -W. Kim, J. -G. Lee, Effect of initial α-phase content of SiC on microstructure and mechanical properties of SiC-TiC composites, Journal of the European Ceramic Society 21 (1) (2001) 93-98.
DOI: 10.1016/s0955-2219(00)00160-6
Google Scholar
[9]
K. Hayashi, A. Yamakawa, Room temperature strength and microstructure of Si3N4-Y2O3-ZrO2-Al2O3 ceramics, Materials Science and Engineering: A 105-106 (1988) 175-182.
DOI: 10.1016/0025-5416(88)90494-6
Google Scholar
[10]
F. Weng, H. Yu, C. Chen, J. Liu, L. Zhao, Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti-6Al-4V alloy, Journal of Alloys and Compounds 650 (2015) 178-184.
DOI: 10.1016/j.jallcom.2015.07.295
Google Scholar
[11]
P. Xu, X. Tang, S. Yao, J. He, G. Xu, Effect of Y2O3 addition on microstructure of Ni-based alloy+Y2O3/substrate laser clad, Journal of Materials Processing Technology 208 (1-3) (2008) 549-555.
DOI: 10.1016/j.jmatprotec.2008.01.026
Google Scholar
[12]
S. Coşkun, M.L. Öveçoğlu, Effects of Y2O3 additions on mechanically alloyed and sintered W-4wt. % SiC composites, International Journal of Refractory Metals and Hard Materials 29 (6) (2011) 651-655.
DOI: 10.1016/j.ijrmhm.2011.04.013
Google Scholar
[13]
T. Hirano, T. Ohji, K. Niihara, Effects of matrix grain size on the mechanical properties of Si3N4/SiC nanocomposites densified with Y2O3, Materials Letters 27 (1-2) (1996) 53-58.
DOI: 10.1016/0167-577x(95)00248-0
Google Scholar
[14]
J. Li, X. Luo, G.J. Li, Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding, Wear 310 (1-2) (2014) 72-82.
DOI: 10.1016/j.wear.2013.12.019
Google Scholar
[15]
F. Peni, J. Crampon, R. Duclos, On the morphology and composition of the oxidized layer in Si3N4-based materials, Materials Science and Engineering: A 163 (1) (1993) L5-L7.
DOI: 10.1016/0921-5093(93)90590-b
Google Scholar
[16]
C. Tian, N. Liu, M. Lu, Thermal shock and thermal fatigue behavior of Si3N4-TiC nano-composites, International Journal of Refractory Metals and Hard Materials 26 (5) (2008) 478-484.
DOI: 10.1016/j.ijrmhm.2007.11.004
Google Scholar
[17]
K. Zhang, J. Zou, J. Li, Z. Yu, H. Wang, Synthesis of Y2O3 particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding, Transactions of Nonferrous Metals Society of China 22 (8) (2012) 1817-1823.
DOI: 10.1016/s1003-6326(11)61392-7
Google Scholar
[18]
F. Zhou, Joining of silicon nitride ceramic composites with Y2O3-Al2O3-SiO2 mixtures, Journal of Materials Processing Technology 127 (3) (2002) 293-297.
DOI: 10.1016/s0924-0136(02)00277-7
Google Scholar
[19]
F. Zhou, C. -M. Suh, S. -S. Kim, Interfacial reaction and joint strength of silicon nitride ceramic composites bonded with Y2O3-Al2O3-SiO2-Si3N4 mixture, Materials Letters 55 (1-2) (2002) 55-60.
DOI: 10.1016/s0167-577x(01)00619-x
Google Scholar
[20]
Szafran, M., Bobryk, E., Kukla, D., Olszyna, A. Si3N4-Al2O3-TiC-Y2O3 composites intended for the edges of cutting tools, Ceramics International 26 (6) (2000) 579-582.
DOI: 10.1016/s0272-8842(99)00098-x
Google Scholar
[21]
M. Colen, R.F. Bunshah, Synthesis and characterization of yttrium oxide (Y2O3) deposits, Journal of Vacuum Science & Technology 13 (1) (1976) 536-540.
DOI: 10.1116/1.568921
Google Scholar
[22]
P. Dašić, Comparative analysis of different regression models of the surface roughness in finishing turning of hardened steel with mixed ceramic cutting tools, Journal of Research and Development in Mechanical Industry 5(2) (2013) 101-180.
Google Scholar
[23]
P. Dašić, Research of processed surface roughness for turning hardened steel by means of ceramic cutting tools, in: Proceedings of the 2nd World Tribology Congress (WTC-2001), Österreichische Tribologische Gesellschaft (ÖTG) – The Austrian Tribology Society, Vienna, 2001: pp.1-6.
Google Scholar