Uncertainty of Additive Manufactured Ti-6Al-4V: Chemistry, Microstructure and Mechanical Properties

Article Preview

Abstract:

Ti-6Al-4V is the most common used titanium alloy in aerospace. Parts are therefore often machined from wrought material with high buy-to-fly ratios. Additive manufacturing, however, allows to build parts rapidly and directly from computer-aided design information, offering better material utilisation and lead time reduction. Despite the high potential for aerospace applications, the reliability of the mechanical properties is still at an early stage. This work should give a first overview by determining and comparing DMLS, EBM and DMD Ti-6Al-4V material. Each process is compared based on standardised post treatments, specimen geometries and test methods.It can be seen that the chemistry, the microstructure, and the defect formation differs between the processes, which leads to a scatter in the experimentally determined static tensile, axial fatigue, and crack growth properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-180

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. K. Rafi, N. V. Karthik, H. Gong, T. Starr, B. Stucker, Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting, Journal of Materials Engineering and Performance, 22 (2013).

DOI: 10.1007/s11665-013-0658-0

Google Scholar

[2] L. Facchini, E. Magalini, P. Robotti, S. Höges, K. Wissenbach, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyping Journal, 16 (2010), pp.450-459.

DOI: 10.1108/13552541011083371

Google Scholar

[3] D. Greitemeier, K. Schmidtke, V. Holzinger, C. Dalle Donne, Additive layer manufacturing of Ti-6Al-4V and ScalmalloyRP: fatigue and fracture, 27th Symposium of the International Committee on Aeronautical Fatigue and Structural Integrity (2013).

Google Scholar

[4] ARCAM AB, Ti6Al4V Titanium alloy, 23. 03. (2015).

Google Scholar

[5] S. S. Al-Bermani, M. L. Blackmore, W. Zhang, I. Todd, The Origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V, Metallurgical and Materials Transactions A, 41 (2010), pp.3422-3434.

DOI: 10.1007/s11661-010-0397-x

Google Scholar

[6] A. A. Antonysamy, Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications, Faculty of Engineering and Physical Sciences, (2012).

Google Scholar

[7] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, H. J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance, International Journal of Fatigue, 48 (2013).

DOI: 10.1016/j.ijfatigue.2012.11.011

Google Scholar

[8] G. Kasperovich, J. Hausmann, Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting, Journal of Materials Processing Technology, 220 (2015), pp.202-214.

DOI: 10.1016/j.jmatprotec.2015.01.025

Google Scholar

[9] EOS GmbH - Electro Optical Systems, Material datasheet, EOS Titanium Ti64, EOS Titanium Ti64, AD, WEIL / 10. 2011, (2011).

Google Scholar

[10] L. Eriksen, Combined EBSD-investigations and in-situ tensile tests of a direct metal deposited Ti6Al4V-alloy, Materials Science and Engineering, (2013).

Google Scholar

[11] E. Brandl, Microstructural and mechanical properties of additive manufactured titanium (Ti-6Al-4V) using wire, evaluation with respect to additive processes using powder and aerospace material specifications, Faculty of Mechanical, Electrical and Industrial Engineering, (2010).

DOI: 10.1016/j.phpro.2010.08.087

Google Scholar

[12] P. Edwards, M. Ramulu, Fatigue performance evaluation of selective laser melted Ti–6Al–4V, Materials Science and Engineering: A, 598 (2014), pp.327-337.

DOI: 10.1016/j.msea.2014.01.041

Google Scholar

[13] EN 2002-001: 2005, Aerospace series - metallic materials - test methods - part 1: tensile testing at ambient temperature, G. I. f. Standardisation, (2006).

Google Scholar

[14] EN 6072: 2010, Aerospace series - metallic materials - test methods - constant amplitude fatigue testing, Association of European Aircraft and Component Manufacturers, (2008).

DOI: 10.3403/30209689u

Google Scholar

[15] ASTM E647-00, Standard test method for measurement of fatigue crack growth rates, ASTM International, (2000).

Google Scholar

[16] ASTM F2924-12, Standard Specification for Additive manufacturing titanium-6 aluminum-4 vanadium with powder bed fusion, ASTM International, (2012).

DOI: 10.1520/f2924-14r21

Google Scholar

[17] ASTM F3001-14, Additive manufacturing titanium-6 aluminum-4 vanadium ELI (extra low interstitial) with powder bed fusion, ASTM International, (2014).

DOI: 10.1520/f3001-13

Google Scholar

[18] U.S. Department of Defense, Military handbook: titanium and titanium alloys, MlL-H DBK-697A, Washington, D.C., (1974).

Google Scholar

[19] D. Greitemeier, V. Holzinger, C. Dalle Donne, T. Melz, Fatigue prediction of additive manufactured Ti-6Al-4V for aerospace: Effect of defects, surface roughness, in press, 28th ICAF Symposium, (2015).

DOI: 10.1179/1743284715y.0000000053

Google Scholar

[20] ESTEC, ESA, ESACRACK user´s manual, ESA Publications Division, ESTEC Netherlands, (1995).

Google Scholar

[21] G. Lütjering, J. C. Williams, Titanium, Springer, Berlin, Heidelberg, New York, (2003).

Google Scholar

[22] D. Greitemeier, C. Dalle Donne, F. Syassen, J. Eufinger, T. Melz, Effect of surface roughness on fatigue performance of additive manufactured Ti-6Al-4V, in press, Materials Science and Technology, (2015).

DOI: 10.1179/1743284715y.0000000053

Google Scholar

[23] H. Kellerer, Übersicht über die Wärmebehandlung von TiAl6V4, Härterei-Technische Mitteilungen, 25 (1970), pp.242-253.

Google Scholar

[24] R. Boyer, G. Welsch, E. W. Collings, Materials properties handbook, titanium alloys, ASM International, Ohio, (1998).

Google Scholar

[25] A. Gysler, G. Lütjering, Influence of test temperature and microstructure on the tensile properties of titanium alloys, Metallurgical Transactions A, 13 (1982), pp.1435-1443.

DOI: 10.1007/bf02642882

Google Scholar

[26] S. R. Lampman, ASM Handbook, fatigue and fracture, ASM International, Ohio, (1997).

Google Scholar

[27] D. D. Harwig, W. Ittiwattana, H. Castner, Advances in oxygen equivalent equations for predicting the properties of titanium welds, Welding Journal, 80 (2001), pp.126-136.

Google Scholar

[28] J. A. Hall, Fatigue crack initiation in alpha-beta titanium alloys, International Journal of Fatigue, 19 (1997), pp.23-37.

DOI: 10.1016/s0142-1123(97)00047-9

Google Scholar

[29] J. Oh, N. J. Kim, S. Lee, E. Lee, High-cycle fatigue properties of investment cast Ti-6Al-4V alloy welds, Journal of materials science letters, 20 (2001), pp.2183-2187.

Google Scholar

[30] G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Materials Science and Engineering: A, 243 (1998), pp.32-45.

DOI: 10.1016/s0921-5093(97)00778-8

Google Scholar