Representation of Human Behaviour for the Visualization in Assembly Design

Article Preview

Abstract:

This article extends the Uncertainty Mode and Effects Analysis (UMEA) to human effects and uses ontologies to connect human driven uncertainty data to the corresponding parts in an aircraft CAD-Assembly. Still, human behaviour is one of the major sources of uncertainty in the product usage phase. Hence, using uncertainty data of human behaviour for product design becomes increasingly important, especially for the control of uncertainty in load carrying systems. In this context, the exchange of semantically enriched uncertainty data between different domains and domain specific applications guarantees the consistency of the data prevents misinterpretation and enables the reuse of existing data for future design decisions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-192

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Engelhardt, A model to analyse Uncertainties on Stakeholders' Evaluations in Technical Systems, Proceedings of the TMCE 2010, April 12–16, Ancona, Italy, (2010).

Google Scholar

[2] VDI 3780 (2000), Technology Assessment Concepts And Foundations, VDI-Richtlinien, Düsseldorf, (2000).

Google Scholar

[3] H. Birkhofer, Analyse und Synthese der Funktionen technischer Produkte, VDI Verlag Düsseldorf, (1980).

Google Scholar

[4] R. Engelhardt, Uncertainty-Mode- and Effects-Analysis – an Approach to Analyze and Estimate Uncertainty in the Product Life Cycle, Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol. 2, Palo Alto, CA, USA, (2009).

Google Scholar

[5] M. Oberle, R. Bruder, Process model for the investigation of human uncertainty during the usage of load bearing systems, Proceedings 19th Triennial Congress of the IEA, Melbourne, (2015).

Google Scholar

[6] R. Moffat, Describing the Uncertainty in Experimental Results, Experimental Thermal and Fluid Science, New York, pp.3-17, (1988).

Google Scholar

[7] B. Möller, M. Beer, Engineering computation under uncertainty - Capabilities of non-traditional models, Computers and Structures, pp.1024-1041, (2008).

DOI: 10.1016/j.compstruc.2007.05.041

Google Scholar

[8] H. Hanselka, R. Platz, Ansätze und Maßnahmen zur Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus: Controlling Uncertainties in Load Carrying Systems, VDI-Zeitschrift Konstruktion, pp.55-62, 11/12 (2010).

Google Scholar

[9] R. Engelhardt et al., A Model to Categorise Uncertainty in Load-Carrying Systems, 1st MMEP International Conference on Modelling and Management Engineering Processes, Cambridge, 19-20 July (2010).

Google Scholar

[10] A. Bretz et al., Darstellung passiver, semi-aktiver und aktiver Maßnahmen im SFB 805-Prozessmodell, 2015. Available on: http: /www. sfb805. tu-darmstadt. de/media/sfb805/f_ downloads/150310_AKIII_Definitionen_aktiv-passiv. pdf, Accessed on: 1. April (2015).

Google Scholar

[11] T. Eifler et al., Approach for a consistent description of uncertainty in process chains of load carrying mechanical systems, Applied Mechanics and Materials, 2012, pp.133-144.

DOI: 10.4028/www.scientific.net/amm.104.133

Google Scholar

[12] R. McElrath, BlackBox, 2013, Available on: http: /www. robbiemcelrath. com/fs/blackbox/about, Accessed on: 2. April (2015).

Google Scholar

[13] M Uschold, R. Jasper, A Framework for Understanding and Classifying Ontology Applications. Proceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm, Sweden, pp.1-12, August (1999).

Google Scholar

[14] T. Gruber, G. Olsen, An Ontology for Engineering Mathematics, Fourth International Conference on Principles of Knowledge Representation and Reasoning, Bonn, pp.258-269, (1994).

DOI: 10.1016/b978-1-4832-1452-8.50120-2

Google Scholar

[15] M. Ast, M. Glas, T. Roehm, Creating an Ontology for Aircraft Design, Publikationen zum Deutschen Luft- und Raumfahrtkongress 2013, Stuttgart, pp.1-11. November (2014).

Google Scholar

[16] L. Lefort, Ontology for Quantity Kinds and Units: units and quantities definitions, 2010. Available on: http: /purl. oclc. org/NET/ssnx/qu/qu-rec20. Accessed on: 26 March (2015).

Google Scholar

[17] M. Glas, Ontology-based Model Integration for the Conceptual Design of Aircraft, (2013).

Google Scholar

[18] X. Fiorentini et al., An Ontology for Assembly Representation, National Institute of Standards and Technology, (2007).

Google Scholar

[19] A. Matsokis, D. Kiritsis, Ontology applications in PLM, International Journal of Product Lifecycle Management (Vol. 5, No. 1), pp.84-97, (2011).

DOI: 10.1504/ijplm.2011.038104

Google Scholar

[20] H. Schorr, Ontologies, Knowledge Bases and Knowledge Management, University of Southern California, Los Angeles, (2011).

Google Scholar

[21] W. Verhagen, R. Curran, An Ontology-based Approach for Aircraft Maintenance Task Support, 20th ISPE International Conference on Concurrent Engineering, pp.494-506, (2013).

Google Scholar

[22] Y Wang, et al., Aviation Equipment Fault Information Fusion Based on Ontology, International Conference on Computer, Communications and Information Technology (CCIT 2014), (2014).

DOI: 10.2991/ccit-14.2014.3

Google Scholar

[23] W3C, Semantic Sensor Net Ontology, Available on: http: /www. w3. org/2005/Incubator/ssn/ wiki/Semantic_Sensor_Net_Ontology, Accessed on 8. April (2015).

Google Scholar

[24] W3C, Ontology for Quantity Kinds and Units: units and quantities definitions, Available on: http: /www. w3. org/2005/Incubator/ssn/ssnx/qu/qu-rec20, Accessed on 8. April (2015).

Google Scholar

[25] E.A. Lee, Cyber Physical Systems: Design Challenges, 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC), Orlando, pp.363-369, (2008).

DOI: 10.1109/isorc.2008.25

Google Scholar

[26] F. Mueller, Challenges for cyber-physical systems: Security, timing analysis and soft error protection, High-Confidence Software Platforms for Cyber-Physical Systems (HCSP-CPS) Workshop, Alexandria, Virginia. (2006).

Google Scholar

[27] W3C, OWL 2 Web Ontology Language Profiles, http: /www. w3. org/TR/owl2-profiles/#Computational_Properties, Accessed on 9. April (2015).

Google Scholar

[28] International Electrotechnical Commission, IEC 61360 - Common Data Dictionary, http: /std. iec. ch/iec61360, Accessed on 9. April (2015).

Google Scholar

[29] eCl@ss e.V., Classification and Product Description, http: /www. eclass. de/, Accessed on 9. April (2015).

Google Scholar

[30] ETIM Deutschland e.V., Das Klassifizierungsmodell der Elektrobranche, http: /www. etim. de/, Accessed on 9. April (2015).

Google Scholar