[1]
A. Mital, S. Anand, Handbook of Expert Systems Applications in Manufacturing Structures and Rules, Chapman & Hall, London, (1994).
Google Scholar
[2]
F. Xhafa, A. Abraham, Metaheuristics for Scheduling in Industrial and Manufacturing Applications (Studies in Computational Intelligence), Springer, Berlin Heidelberg, (2008).
DOI: 10.1007/978-3-540-78985-7
Google Scholar
[3]
D. Krenczyk, B. Skołud, Production Preparation and Order Verification Systems Integration Using Method Based on Data Transformation and Data Mapping, Lecture Notes in Artificial Intelligence, Hybrid Artificial Intelligent Systems. 6679 (2011).
DOI: 10.1007/978-3-642-21222-2_48
Google Scholar
[4]
K. Kalinowski, C. Grabowik, W. Kempa, I. Paprocka, The procedure of reaction to unexpected events in scheduling of manufacturing systems with discrete production flow, Advanced Materials Research. 1036 (2014) 840-845.
DOI: 10.4028/www.scientific.net/amr.1036.840
Google Scholar
[5]
P. Lopez, F. Roubellat, Production Scheduling, John Wiley & Sons, Hoboken, (2010).
Google Scholar
[6]
E. Pinson, C. Prins, F. Rullier, Using Tabu Search for Solving the Resource-Constrained Project Scheduling Problem, Proceedings of the 4th International Workshop on Project Management and Scheduling, Leuven, (1994).
Google Scholar
[7]
R. Kolisch, Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation, European Journal of Operational Research. 90 (1996) 320-333.
DOI: 10.1016/0377-2217(95)00357-6
Google Scholar
[8]
S. Hartmann, Project Scheduling Under Limited Resources: Models, Methods, and Applications, Springer, Berlin, (1999).
Google Scholar
[9]
Ch. Artigues, P. Lopez, P.D. Ayache, Schedule generation schemes for the job-shop problem with sequence-dependent setup times: dominance properties and computational analysis, Annals of Operations Research. 138 (2005) 21-52.
DOI: 10.1007/s10479-005-2443-4
Google Scholar
[10]
J. Kim, R. Ellis, Comparing Schedule Generation Schemes in Resource-Constrained Project Scheduling Using Elitist Genetic Algorithm, Journal of Construction Engineering and Management. 136 (2010) 160-169.
DOI: 10.1061/(asce)0733-9364(2010)136:2(160)
Google Scholar
[11]
G. Ćwikła, The methodology of development of the Manufacturing Information Acquisition System (MIAS) for production management, Applied Mechanics and Materials. 474 (2014) 27-32.
DOI: 10.4028/www.scientific.net/amm.474.27
Google Scholar
[12]
A. Dymarek, T. Dzitkowski, Passive reduction of system vibrations to the desired amplitude value, Journal of Vibroengineering. 15, 3 (2013) 1254-1264.
Google Scholar
[13]
S. Zolkiewski, Numerical Application for Dynamical Analysis of Rod and Beam Systems in Transportation, Solid State Phenomena. 164 (2010) 343-348.
DOI: 10.4028/www.scientific.net/ssp.164.343
Google Scholar
[14]
K. Kalinowski, C. Grabowik, I. Paprocka, W. Kempa, Interaction of the decision maker in the process of production scheduling, Advanced Materials Research. 1036 (2014) 830-833.
DOI: 10.4028/www.scientific.net/amr.1036.830
Google Scholar
[15]
N. J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, (1998).
Google Scholar
[16]
M. Hetmańczyk, The multilevel prognosis system based on matrices and digraphs methods, in: Mechatronic Systems and Materials, Solid State Phenomena. 199 (2013) 79-84.
DOI: 10.4028/www.scientific.net/ssp.199.79
Google Scholar
[17]
R. Marinescu, R. Dechter, AND/OR Tree Search for Constraint Optimization, Proceedings of the 6th International Workshop on Preferences and Soft Constraints, Toronto, (2004).
Google Scholar
[18]
W. Imrich, S. Klavzar, D.F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product, AK PETERS LTD. Wellesley, Massachusetts, (2008).
Google Scholar
[19]
M.L. Pinedo, Scheduling Theory, Algorithms and Systems. Springer, New York, (2012).
Google Scholar