[1]
G. Krolzyk, M Gajek, S. Legutko, Predicting the tool life in the dry machining of duplex stainless steel, Eksploatacja i Niezawodnosc – Maintenance and Reliability. 15 (2013) 62-65.
Google Scholar
[2]
S. Raja, N. Baskar, Optimization techniques for machining operations: a retrospective research based on various mathematical models, Int. J. Adv. Manuf. Technol. 48 (2010) 1075–1090.
DOI: 10.1007/s00170-009-2351-x
Google Scholar
[3]
R. D. Koyee, R. Eisseler, S. Schmauder, Application of Taguchi coupled fuzzy multi attribute decision making (FMADM) for optimizing surface quality in turning austenitic and duplex stainless steel, Measurement. 58 (2014) pp.375-386.
DOI: 10.1016/j.measurement.2014.09.015
Google Scholar
[4]
K. Lu, M. Jing, X. Zhang, H. Liu, Optimization of sequential subdivision of depth of cut in turning operations using dynamic programming, Int. J. Adv. Manuf. Technol. 68 (2013) 1733–1744.
DOI: 10.1007/s00170-013-4971-4
Google Scholar
[5]
D. P. Selvaraj, P. Chandramohan, M. Mohanraj, Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method, Measurement. 49 (2014) 205–215.
DOI: 10.1016/j.measurement.2013.11.037
Google Scholar
[6]
K. A. Mellal, E. J Williams, Cuckoo optimization algorithm for unit production cost in multi-pass turning operations, Int. J. Adv. Manuf. Technol. 76 (2015) 647–656.
DOI: 10.1007/s00170-014-6309-2
Google Scholar
[7]
J. Srinivas, R. Giri, S. -H. Yang, Optimization of multi-pass turning using particle swarm intelligence, Int. J. Adv. Manuf. Technol. 40 (2009) 56–66.
DOI: 10.1007/s00170-007-1320-5
Google Scholar
[8]
H. Lu, W. Chen, Dynamic-objective particle swarm optimization for constrained optimization problems, J. Comb. Optim. 12 (2006) 409–419.
DOI: 10.1007/s10878-006-9004-x
Google Scholar
[9]
A. Belloufi, M. Assas, I. Rezgui, Optimization of Cutting Conditions in Multi-Pass Turning Using Hybrid Genetic Algorithm-Sequential Quadratic Programming, J. Applied Mechanic Eng. 1 (2012) 1 – 5.
DOI: 10.4172/2168-9873.1000101
Google Scholar
[10]
R. Q. Sardinas, M. R. Santana, E. A. Brindis, Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes, Engineering Applications of Artificial Intelligence. 19 (2006) 127–133.
DOI: 10.1016/j.engappai.2005.06.007
Google Scholar
[11]
A. R. Yildiz, Optimization of multi-pass turning operations using hybrid teaching learning-based approach, Int. J. Adv. Manuf. Technol. 66 (2013) 1319–1326.
DOI: 10.1007/s00170-012-4410-y
Google Scholar
[12]
R. Storn, K. Price, Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces, J. Global Optimiz. 11 (1997) 341-359.
Google Scholar
[13]
I. T. Rekanos, Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization, IEEE Trans. Geosci. Remote Sens. 46 (2008) 1967–(1974).
DOI: 10.1109/tgrs.2008.916635
Google Scholar