Artificial Immune System in Topology Optimization of Mechanical Structures

Article Preview

Abstract:

The paper deals with an application of the artificial immune system (AIS) to the optimization of shape, topology and material properties of 3-D structures. Structures considered in this work are analyzed by the finite element method (FEM). Optimization criteria that are taken into account concern minimize mass and of elastic strain energy. Numerical examples demonstrate that the method based on soft computing is a very effective technique for solving computer aided optimal design.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

908-913

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] YM. Xie, GP. Steven, Evolutionary Structural Optimization. London: Springer, (1997).

Google Scholar

[2] MP. Bendsøe, O. Sigmund, Topology optimization, theory, methods and applications. Springer, Berlin, (2003).

Google Scholar

[3] M. Szczepanik, A. Poteralski, A. Długosz, W. Kuś, T. Burczyński, Bio-inspired optimization of thermomechanical structures Springer-Verlag Berlin Heidelberg 2013, ICAISC 2013, Part II, LNAI 7895 (2013) 79-90.

DOI: 10.1007/978-3-642-38610-7_8

Google Scholar

[4] M. Szczepanik, T. Burczyński, Swarm optimization of stiffeners locations in 2-D structures, Bulletin of the Polish Academy of Sciences, Technical Sciences. 60(2) (2012) 241-246.

DOI: 10.2478/v10175-012-0032-7

Google Scholar

[5] M. Szczepanik, A. Poteralski, J. Ptaszny, T. Burczyński, Hybrid particle swarm optimizer and Its application in identification of room acoustic properties, SIDE 2012 and EC 2012, (Rutkowski L. et al. Eds. ), Swarm and Evolutionary Computation, Lecture Notes in Computer Science. 7269 (2012).

DOI: 10.1007/978-3-642-29353-5_45

Google Scholar

[6] M. Szczepanik, T. Burczynski, Intelligent optimal design of spatial structures, Computers & Structures. 127 (2013) 102-115.

DOI: 10.1016/j.compstruc.2013.04.029

Google Scholar

[7] M. Ptak, W. Ptak, Basics of Immunology, Jagiellonian University Press, Cracow, (2000).

Google Scholar

[8] L. N. de Castro, J. Timmis, Artificial immune systems as a novel soft computing paradigm, Soft Computing. 7(8), 526-544 (2003).

DOI: 10.1007/s00500-002-0237-z

Google Scholar

[9] A. Poteralski, M. Szczepanik, G. Dziatkiewicz, W. Kuś, T. Burczyński, Comparison between PSO and AIS on the basis of identification of material constants in piezoelectrics Springer-Verlag Berlin Heidelberg 2013, ICAISC 2013, Part II, LNAI 7895 (2013).

DOI: 10.1007/978-3-642-38610-7_52

Google Scholar

[10] A. Poteralski, M. Szczepanik, W. Beluch, T. Burczyński, Optimization of composite structures using bio-inspired methods, Artificial intelligence and soft computing. 8468 (2014) 385-395.

DOI: 10.1007/978-3-319-07176-3_34

Google Scholar

[11] T. Burczyński, A. Poteralski, M. Szczepanik, Topological evolutionary computing in the optimal design of 2D and 3D structures, Engineering Optim. 39, 7 (2007) 811-830.

DOI: 10.1080/03052150701515102

Google Scholar

[12] T. Burczyński, W. Kuś, A. Długosz, A. Poteralski, M. Szczepanik, Sequential and Distributed Evolutionary Computations in Structural Optimization, International Conference on Artificial Intelligence and Soft Computing, Lecture Notes on Artificial Intelligence. 3070 (2004).

DOI: 10.1007/978-3-540-24844-6_167

Google Scholar

[13] T. Burczyński, A. Dlugosz, W. Kus, P. Orantek, A. Poteralski, M. Szczepanik, Intelligent computing in evolutionary optimal shaping of solids, in the proceedings of the 3rd International Conference on Computing, Communications and Control Technologies, 3, 2005, pp.294-298.

Google Scholar

[14] O.C. Zienkiewicz, and R.L. Taylor, The Finite Element Method, Butterworth Heinemann, Oxford, (2000).

Google Scholar

[15] A. Poteralski, Optimization of Mechanical Structures Using Artificial Immune Algorithm, Beyond Databases, Architectures, and Structures, Communications in Computer and Information Science. 424 (2014) 280-289.

DOI: 10.1007/978-3-319-06932-6_27

Google Scholar

[16] A. Poteralski, M. Szczepanik, J. Ptaszny , W. Kuś, T. Burczyński, Hybrid artificial immune system in identification of room acoustic properties Inverse Problems in Science and Engineering. 21, 6, (2013) 957-967.

DOI: 10.1080/17415977.2013.788174

Google Scholar

[17] ST. Wierzchoń, Artificial Immune Systems, theory and applications (in Polish), EXIT Publishing House, (2001).

Google Scholar

[18] D. Janicki, High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings, Solid State Phenomena, Mechatronic Systems and Materials. V, 199 (2013) 587-592.

DOI: 10.4028/www.scientific.net/ssp.199.587

Google Scholar

[19] D. Janicki, Fiber laser welding of nickel based superalloy Inconel 625, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers, 8703, 2013, pp. 87030R.

DOI: 10.1117/12.2013430

Google Scholar

[20] M. Burda, A. Gruszczyk, T. Kik, K. Kozioł, A. lÍkawa-Raus: Novel alloys for soldering carbon nanotubes fibers and other carbon based structures, in the proceedings of the 15th International Conference on Experimental Mechanics, Faculty of Engineering, University of Porto, (2012).

Google Scholar

[21] T. Kik, Numerical analysis of MIG welding of butt joints in aluminium alloy, Biuletyn Instytutu Spawalnictwa. 58(3) (2014) 37-49.

Google Scholar

[22] A. Lisiecki, Welding of thermomechanically rolled fine-grain steel by different types of lasers, Arch. Metall. Mater. 59(4) (2014) 1625-1631.

DOI: 10.2478/amm-2014-0276

Google Scholar

[23] A. Lisiecki, Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding. Metals, 5(1) (2015) 54-69.

DOI: 10.3390/met5010054

Google Scholar