Active Static Balancing of Mechatronic Systems - An Overview

Article Preview

Abstract:

Static balancing of a mechanical system can be regarded as the total or partial cancellation of the mechanical effects (force or moment) of static loads to the actuating system of it, in all configurations, respectively in a finite number of configurations, from functioning domain, under quasi-static conditions. Active balancing is taking into consideration the variation of static loads during the functioning of mechanical systems. As a consequence the active balancing requires an adaptive controlling system and a dynamic model of mechatronic system. In this article, some aspects of the active static balancing problem of mechanical systems are surveyed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-259

Citation:

Online since:

November 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Agrawal, S. K., Gardner, G. and Pleidgie, S., Design and fabrication of an active gravity balanced planar mechanism using auxiliary parallelograms, Journal of Mechanical Design, Transactions of the ASME 2001, Vol. 123(4), pp.525-528, (2001).

DOI: 10.1115/1.1413771

Google Scholar

[2] Alici G. and Shirinzadeh B., Optimum force balancing with mass distribution and a single elastic element for a five-bar parallel manipulator, Proceedings of Int. Conf. on Robotics and Automation ICRA'03, Taipei, 14-19 September 2003, Vol. 3, pp.3666-3671, (2003).

DOI: 10.1109/robot.2003.1242159

Google Scholar

[3] Arakelian, V. H., Sargsyan, S., On the design of serial manipulators with decoupled dynamics, In: Mechatronics, No. 22, pp.904-909, (2012).

DOI: 10.1016/j.mechatronics.2012.04.001

Google Scholar

[4] Arakelian, V. H., Briot, S., Balancing of Linkages and Robot Manipulators, Springer Publishing House, serie of Mechanisms and Machine Science, Vol. 27, ISBN 978-3-319-12489-6, DOI 10. 1007/978-3-319-12490-2, (2015).

DOI: 10.1007/978-3-319-12490-2

Google Scholar

[5] Bales, D. R., Bales, D. R., Fedler C. B., Pumping Unit with Dynamic Fluid Ballast, U. S. Patent 5, 735, 170, (1995).

Google Scholar

[6] Ciupitu, L., The Weight Forces Balancing of Industrial Robots Arms, PhD Thesis Code 043-1342-UP1, 1997 (in Romanian) - Extended Abstract, Politehnica University of Bucharest, Romania, (2002).

Google Scholar

[7] Ciupitu, L. and Olaru, A., Dynamic Analysis of a Robot Arm Balanced by a Helical Spring. In: Proceedings of 7th International Conference on Automation/Robotics in theory and practice ROBTEP 2004, Vyšné Ružbachy, Slovak Republic, May 19-21, 2004, ISBN 80-8073-134-9, pp.95-102, (2004).

Google Scholar

[8] Ciupitu, L., Simionescu, I. and Lee, C. -C., Static Balancing – an Overview. Proceedings of the First Asian Conference on Mechanism and Machine Science 2010, Taipei, Taiwan, 21-25 October 2010, pp.250084-1 – 250084-8, (2010).

Google Scholar

[9] Ciupitu, L., Simionescu, I. and Olaru, A. (2012).

Google Scholar

[10] Dranga, M., Metodă de echilibrare a unui lanţ cinematic (Balancing method of a kinematic chain), Patent RO 87453, 1985 (in Romanian).

Google Scholar

[11] van Dorsser, W. D., Barents, R., Wisse, B. M., Herder, J. L., Energy-free adjustment of gravity equilibrators, with application in a mobile arm support, In: Proceedings of DETC 2006, ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, Pennsylvania, September 10-13, code DETC2006-99745, (2006).

DOI: 10.1115/detc2006-99745

Google Scholar

[12] van Dorsser, W. D., Barents, R., Wisse, B. M., Herder, J. L., Gravity-Balanced Arm Support With Energy-Free Adjustment, Journal of Medical Devices, June 2007, Vol. 1, pp.151-158, (2007).

DOI: 10.1115/1.2736400

Google Scholar

[13] Duval, E. F., Counter Balance System and Method with One or More Mechanical Arms, U. S. Patent 7, 428, 855 B2, (2003).

Google Scholar

[14] Erich, R. R., Pumping Device, U. S. Patent 4, 715, 240, (1985).

Google Scholar

[15] French, M. J., Widden, M. B., The spring-and-lever balancing mechanism, George Carwardine and the Anglepoise lamp, In: Proceedings of Institution of Mechanical Engineers, Vol. 214, Part C, IMechE 2000, pp.501-508.

DOI: 10.1243/0954406001523137

Google Scholar

[16] Garmong, V. H., Well Pump Jack with Controlled Counterbalancing, U. S. Patent 4, 377, 092, (1980).

Google Scholar

[17] Greene, H. P., Load compensator for spring counter-weighting mechanism, U. S. Patent 5, 400, 721, (1995).

Google Scholar

[18] Grigsby, R. E., Auxiliary Counter Balance for Well Pump, U. S. Patent 4, 321, 837, (1982).

Google Scholar

[19] Hain, K., Spring Mechanisms - Point Balancing and Spring Mechanisms - Continuous Balancing, Spring Design and Application, Chironis, N. D., ed., McGraw-Hill, New York., pp.268-275, (1961).

Google Scholar

[20] Hirose, S., Imazato, M., Kudo, Y. and Umetani, Y., Internally-balanced magnet unit, Advanced Robotics Journal, 1(3), pp.225-242, (1986).

DOI: 10.1163/156855386x00139

Google Scholar

[21] Jnifene, A., Analysis and Control of Spring Counterbalanced Robot Arm, University of Ottawa, M.A. Sc. Thesis, ISBN 0-315-56404-0, 160 pgs., (1989).

Google Scholar

[22] Jakobsen, S. M., Passive Heave Compensation of Heavy Modules, Master Thesis, Stavanger University, Norway, (2008).

Google Scholar

[23] Jo, D. Y., Haug, E. J. and Beck, R. R., Optimization of Force Balancing Mechanism, U.S. Army Tank-Automotive Command Research and Development Centre, Warren, Michigan, Technical Report No. 12643, Contract Number DAAK 30-8-C-0042, 37 pages, March (1982).

Google Scholar

[24] Kazerooni, H., Design and analysis of the statically balanced direct-drive robot manipulator, Robotics and Computer Integrated Manufacturing, Vol. 6, No. 4, pp.287-293, (1989).

DOI: 10.1016/0736-5845(89)90118-x

Google Scholar

[25] Kelley, R.K., Pneumatic Beam Pumping Unit, U. S. Patent 3, 971, 213, (1974).

Google Scholar

[26] King, G. R., Long Stroke Pump Jack, U. S. Patent 4, 306, 463, (1980).

Google Scholar

[27] Kolarski, Maja, Vukobratovic, M. and Borovac, B., Dynamic analysis of balanced robot mechanisms, Mechanism and Machine Theory, vol. 29, No. 3, pp.427-454, Pergamon, Elsevier Science Ltd, Oxford, Great Britain, (1994).

DOI: 10.1016/0094-114x(94)90128-7

Google Scholar

[28] Korendiasev, A. I., Salamandra, B. L., Tyves, L. I., Vladov, I. L., Danilevskii, V. N., Zhavner, V. L., Koliskor, A. Sh., Petrov, L. N., Serkov, N. A., Modestov, M. B., Ushakov, V. I., Tichomirov, V. G., Kovalev, V. E., Манипуляционные системы роботов (Manipulation Systems of Robots), Ed. Popov, E. R., Mashinostrojenie, Moscow, (1989).

Google Scholar

[29] Koski, J., Osyczka, A., Mechanisms and Dynamic Systems, Chp. 5 In: Multicriteria Design Optimization, J. Koski, A. Osyczka, J. Zajac, F. Pfeiffer, H. H. Müller-Slany, D. H. van Campen, R. Nagtegaal, A. J. G. Schoofs Eds., ISBN 978-3-642-48699-9, 1990, DOI 10. 1007/978-3-642-48697-5_5, pp.151-228.

DOI: 10.1007/978-3-642-48697-5_5

Google Scholar

[30] Lacasse, M. -A., Lachance, G., Boisclaire, J., Ouellet, J., Gosselin, C., On the design of statically balanced serial robot using remote counterweights, In: Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany, May 6-10, 2013, ISBN 978-1-4673-5643-5/13, pp.4189-4194.

DOI: 10.1109/icra.2013.6631169

Google Scholar

[31] Martini, A., Troncossi, M., Carricato, M., Rivola, A., Elastodynamic behavior of balanced closed-loop mechanism: numerical analysis of a four-bar linkage, DOI 10. 1007/s11012-013-9815-7, Mecanica, 49, 601-614, (2014).

DOI: 10.1007/s11012-013-9815-7

Google Scholar

[32] Lyons, W. C., Plisga, G. P., Standard Handbook of Petroleum and Natural Gas Engineering, 2-nd edition, Gulf Professional Publishing (Elsevier), ISBN 0-7506-7785-6, (2005).

Google Scholar

[33] Martini, A., Troncossi, M., Carricato, M., Rivola, A., Elastodynamic behaviour of balanced closed-loop mechanisms: numerical analysis of a four-bar linkage, In: Meccanica, No. 49, DOI: 10. 1007/s11012-013-9815-7, pp.601-614, (2014).

DOI: 10.1007/s11012-013-9815-7

Google Scholar

[34] McCormick, J., Method and Apparatus for Oil Well Pumping, U. S. Patent 6, 386, 322 B1, (2000).

Google Scholar

[35] Moradi, M., Nikoobin, A., Azadi, S., Adaptive Decoupling for Open Chain Planar Robots, Transaction B: Mechanical Engineering, Vol. 17, No. 5, pp.376-386.

Google Scholar

[36] Nathan, R. H., A Constant Force Generation Mechanism, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 107, pp.508-512, December (1985).

DOI: 10.1115/1.3260755

Google Scholar

[37] Paz, R. A., Barajas, J. C., Autobalancing Control for a Reduced Gravity Simulator, In: Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, Australia, July 9-12, 2013, ISBN 978-1-4673-5320-5/13, pp.405-410.

DOI: 10.1109/aim.2013.6584125

Google Scholar

[38] Petzold, T. L. and Pech, D. J., Lift Enhancing Beam Attachment with Movable Counterweights, U. S. Patent 4, 729, 486, (1988).

Google Scholar

[39] Simionescu, I. and Ciupitu, L., The Static Balancing of Industrial Robot Arms. Part I: Discrete Balancing, Mechanism and Machine Theory Journal, 35(9), pp.1287-1298, (2000).

DOI: 10.1016/s0094-114x(99)00067-1

Google Scholar

[40] Simionescu, I. and Ciupitu, L., The Static Balancing of Industrial Robot Arms. Part II: Continuous Balancing. Mechanism and Machine Theory Journal, 35(9), pp.1299-1311, (2000).

DOI: 10.1016/s0094-114x(99)00068-3

Google Scholar

[41] Simionescu, I., Ciupitu, L. and Horjea, M., On The Dynamics of Static Balanced Robot Arms. In: Buletinul Institutului Politehnic Iasi, Journal, Tome L (LIV), No. 6A, ISSN 1011-2855, pp.427-438, (2004).

Google Scholar

[42] Solazzi, M., Frisoli, A., Bergamasco, M., Sotgiu, E., Kinematic design of a gravity compensated robot for device for ultrasound examination and assesment of endothelial dysfunction, Proceedings of 12-th IFToMM World Congress, Besancon, June 18-21, (2007).

Google Scholar

[43] Stricker, P. A., Active-Passive Motion Compensation Systems for Marine Towing, Master Thesis, The University of British Columbia, Canada, (1975).

Google Scholar

[44] Tepper, F. R. and Lowen, G. G., General Theorems Concerning Full Force Balancing of Planar Linkages by Internal Mass Redistribution, Journal of Engineering for Industry, Vol. 94B, No. 3, August 1972, pp.789-796, (1972).

DOI: 10.1115/1.3428252

Google Scholar

[45] Vermeulen, M., Wisse, M., Intrinsically Safe Robot Arm: Adjustable Static Balancing and Low Power Actuation, DOI 10. 1007/s12369-010-0048-9, Int J Soc Robot, 2, 275-288, (2010).

DOI: 10.1007/s12369-010-0048-9

Google Scholar

[46] Wijk, V., Herder, J. L., Demeulenaere, B., Comparison of Various Dynamic Balancing Principles Regarding Additional Inertia, DOI 10. 1115/1/3211022, Journal of Mechanisms and Robotics, vol. 1, November 2009, 041006-1 - 041006-9.

DOI: 10.1115/1.3211022

Google Scholar

[47] Yi, L. and Leinonen, T., Synthesis and Analysis of Stroke-Increasing and Force-Balancing Mechanisms for Rod Pumping Units, Journal of Energy Resources Technology, Vol. 124, Issue 1, pp.14-19, March (2002).

DOI: 10.1115/1.1446071

Google Scholar

[48] ** (ABB), Industrial robots IRB 6499 RF, Västerås, Sweden.

Google Scholar

[49] ** (ACE Winches), Heave Compensation Winch System, (2011).

Google Scholar

[50] ** (KUKA GmbH), Industrial robots IR 160/60 and IR 601/60, Augsburg, Germany.

Google Scholar

[51] ** (Lufkin Automation), SamTM Well Manager - Rod Pump Controller, www. lufkinautomation. com, (2006).

Google Scholar

[52] ** (Wikipedia), http: /en. wikipedia. org/wiki/Main_Page, last access: 29. 06. (2015).

Google Scholar