Development of a Wearable Scoliosis Monitoring System Using Inertial Sensors

Article Preview

Abstract:

Monitoring human motion with magnetic and inertial measurement units is a complex task and there are many factors that must be taken into consideration. In this work, a wearable system for monitoring scoliosis using three inertial measurement units (IMUs) is introduced. The proposed solution can be used indoor and is focused on using the roll angle for measuring lateral movement of the spine, which characterizes the scoliosis spinal disorder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

353-358

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Huddleston, A. Alaiti, D. Goldvasser, D. Scarborough, A. Freiberg, H. Rubash, H. Malchau, W. Harris, D. Krebs, in: Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor, Journal NeuroEng. Rehabil. 3 (2006).

DOI: 10.1186/1743-0003-3-21

Google Scholar

[2] Godfrey, R. Conway, D. Meagher, G. ÓLaighin, in: Direct measurement of human movement by accelerometry, Medical Engineering & Physics 30 (2008).

DOI: 10.1016/j.medengphy.2008.09.005

Google Scholar

[3] H. L. Su, D. W. Zhang, in: Study on Error Compensation of Human Motion Analysis System, Applied Mechanics and Materials, Vols. 48-49, pp.1149-1153, Feb. (2011).

DOI: 10.4028/www.scientific.net/amm.48-49.1149

Google Scholar

[4] S. Haldeman, D. Kopansky-Giles, E. L. Hurwitz, D. Hoy, in: Advancements in the Management of Spine Disorders, Best Practice & Research Clinical Rheumatology 26 (2012).

DOI: 10.1016/j.berh.2012.03.006

Google Scholar

[5] I. Raso, R. Hervás, J. Bravo, in: m-Physio: personalized accelerometer-based physical rehabilitation platform, in: Proc. Fourth Int. Conf. Mobile Ubiquitous Computing, Systems, Services and Technologies, Florence, Italy, 25–30October (2010).

Google Scholar

[6] G. Y. Shi, Y. X. Zou, W. J. Li, Y. F. Jin, P. Guan, in: Towards Multi-Classification of Human Motions Using Micro IMU and SVM Training Process, Advanced Materials Research, Vols. 60-61, pp.189-193, Jan. (2009).

DOI: 10.4028/www.scientific.net/amr.60-61.189

Google Scholar

[7] P.E. Taylor, G.J.M. Almeida, T. Kanade, J.K. Hodgins, in: Classifying human motion quality for knee osteoarthritis using accelerometers, in: Proc. 32nd Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 31 August–4 September (2010).

DOI: 10.1109/iembs.2010.5627665

Google Scholar

[8] D. González-Ortega, F.J. Díaz-Pernas, M. Martínez-Zarzuela,M. Antón-Rodríguez, in: A Kinect-based system for cognitive rehabilitation exercises monitoring, Comput. Meth. Prog. Bio. 113 (November (2) (2013) 620–631.

DOI: 10.1016/j.cmpb.2013.10.014

Google Scholar

[9] D.A. Brooks, A.M. Howard, in: Quantifying upper-arm rehabilitation metrics for children through interaction with a humanoid robot, Appl. Bionics Biomech. 9 (April (2) (2012)157–172.

DOI: 10.1155/2012/978498

Google Scholar

[10] T. Giorgino, P. Tormene, G. Maggioni, C. Pistarini, S. Quaglini, in: Wireless support to post stroke rehabilitation: MyHeart's neurological rehabilitation concept, IEEE Trans. Inform. Technol. B 13 (November (6) (2009) 1012–1018.

DOI: 10.1109/titb.2009.2028020

Google Scholar

[11] T.H. Ha, K. Saber-Sheikh, A. P. Moore, M. P. Jones, in: Measurement of lumbar spine range of movement and coupled motion using inertial sensors – A protocol validity study, Manual Therapy 18 (2013) 87-91.

DOI: 10.1016/j.math.2012.04.003

Google Scholar

[12] D. Rodríguez-Martín, C. Pérez-López, A. Samà, J. Cabestany, A. Català, in: A wearable inertial measurement unit for long-term monitoring in the dependency care area, Sensors (2013).

DOI: 10.3390/s131014079

Google Scholar

[13] A. Olivares, G. Olivares, F. Mula, J.M. Górriz, J. Ramírez, in: Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications, Journal of Systems Architecture 57 (2011) 905–915.

DOI: 10.1016/j.sysarc.2011.04.001

Google Scholar

[14] Y. Tao, H. Hu, in: A novel sensing and data fusion system for3-D arm motion tracking in telerehabilitation, IEEE Trans. Instrum. Meas. 57 (May (5) (2008) 1029–1040.

DOI: 10.1109/tim.2007.913828

Google Scholar

[15] S. Anwer, N. Quddus, M. Miraj, A. Equebal, in: Effectiveness of electromyographic biofeedback training on quadriceps muscle strength in osteoarthritis of knee, Hong Kong Physiother. J. 29 (December (2) (2011) 86–93.

DOI: 10.1016/j.hkpj.2011.06.006

Google Scholar

[16] http: /www. kosmodisk. co. uk.

Google Scholar

[17] J.M. Lambrecht, M.L. Audu, R.J. Triolo, R.F. Kirsch, in: Musculoskeletal model of trunk and hip for development of seated-posture-control neuroprosthesis, Journal of Rehabilitation Research & Development, Volume 46 Number 4, (2009).

DOI: 10.1682/jrrd.2007.08.0115

Google Scholar

[18] G.D. Voinea, S. Butnariu, in: Design of a scoliosis monitoring system using inertial sensors, in press.

Google Scholar

[19] MPU-9150 Product Specification Revision 4. 0, Website: www. invensense. com, (2012).

Google Scholar

[20] K. Nicholson, A. K. Jagadish, in: Sensor fusion enhances device performance, EDN Europe, www. edn-europe. com, Edition May (2015).

Google Scholar

[21] S.O.H. Madgwick, A.J.L. Harrison, R. Vaidyanathan, in: Estimation of IMU and MARG orientation using a gradient descent algorithm, 2011 IEEE International Conference on Rehabilitation Robotics Rehab Week Zurich, ETH Zurich Science City, Switzerland, June 29 - July 1, (2011).

DOI: 10.1109/icorr.2011.5975346

Google Scholar

[22] E. Bergamini, G. Ligorio, A. Summa, G. Vannozzi, A. Cappozzo, A.M. Sabatini, in: Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks, Sensors (2014).

DOI: 10.3390/s141018625

Google Scholar