Parameter Optimization for Friction Stir Welding AA1100

Article Preview

Abstract:

Friction stir welding (FSW) has become a potential solid state joining technique with considerable advantages over conventional joining process. Defect-free friction stir welded joints with high joint strength are obtained when optimum process parameters are used. Although a large number of parameters govern the FSW process, the tool rotation speed, Welding speed and tool geometry are key parameters that influence the joint strength. In this work, a statistical model relating process parameters and the tensile strength (TS) of friction stir welded AA1100 joints is build using response surface methodology. The four independent variables are tool rotational speed (TRS), welding speed (WS), shoulder diameter (SD) and pin diameter (PD). Central Composite design is used and Analysis of Variance at 95% confidence level was applied to assess the adequacy of the developed model. Genetic algorithm is used for optimizing the parameters. The optimum process parameter values predicted using the genetic algorithm are as follows. Tool rotation speed: 1001.9 rpm; welding speed: 62 mm/min; shoulder diameter: 17.8 mm and pin diameter: 6.5 mm. The corresponding tensile strength of the joints is 73.1556 MPa

You might also be interested in these eBooks

Info:

Periodical:

Pages:

462-466

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mishra, R.S. and Z.Y. Ma, Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(2005) 1-78.

Google Scholar

[2] Nandan, R., T. DebRoy, and H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties. Progress in Materials Science, 53(2008) 980-1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[3] Babajanzade Roshan, S., M. Behboodi Jooibari, R. Teimouri, G. Asgharzadeh-Ahmadi, M. Falahati-Naghibi, and H. Sohrabpoor, Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm. The International Journal of Advanced Manufacturing Technology, 69(2013).

DOI: 10.1007/s00170-013-5131-6

Google Scholar

[4] Amini, S., M.R. Amiri, and A. Barani, Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy. The International Journal of Advanced Manufacturing Technology, 76(2015) 255-261.

DOI: 10.1007/s00170-014-6277-6

Google Scholar

[5] Lotfi, A. and S. Nourouzi, Effect of Welding Parameters on Microstructure, Thermal, and Mechanical Properties of Friction-Stir Welded Joints of AA7075-T6 Aluminum Alloy. Metallurgical and Materials Transactions A, 45(2014) 2792-2807.

DOI: 10.1007/s11661-014-2235-z

Google Scholar

[6] Saunders, N., M. Miles, T. Hartman, Y. Hovanski, S. -T. Hong, and R. Steel, Joint strength in high speed friction stir spot welded DP 980 steel. Int. J. Precis. Eng. Manuf., 15(2014) 841-848.

DOI: 10.1007/s12541-014-0407-9

Google Scholar

[7] Reza-E-Rabby, M. and A.P. Reynolds, Effect of Tool Pin Thread Forms on Friction Stir Weldability of Different Aluminum Alloys. Procedia Engineering, 90(2014) 637-642.

DOI: 10.1016/j.proeng.2014.11.784

Google Scholar

[8] Naga Malleswara Rao, G., Design optimization and analysis of a connecting rodusing ANSYS. International Journal of Science and Research., 2(2013) 225-229.

Google Scholar

[9] Mao, Y., L. Ke, F. Liu, Q. Liu, C. Huang, and L. Xing, Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Materials & Design, 62(2014) 334-343.

DOI: 10.1016/j.matdes.2014.05.038

Google Scholar

[10] Gandra, J., D. Pereira, R.M. Miranda, and P. Vilaça, Influence of Process Parameters in the Friction Surfacing of AA 6082-T6 over AA 2024-T3. Procedia CIRP, 7(2013) 341-346.

DOI: 10.1016/j.procir.2013.05.058

Google Scholar

[11] Chiou, Y. -C., C. -T. Liu, and R. -T. Lee, A pinless embedded tool used in FSSW and FSW of aluminum alloy. Journal of Materials Processing Technology, 213(2013) 1818-1824.

DOI: 10.1016/j.jmatprotec.2013.04.018

Google Scholar

[12] Padmanaban, R., A. Vignesh, V. MuthuKumaran, and S. Basil, A Study on Process Parameters and Tool Geometry Effect on Friction Stir Welding of AA1100. International Journal of Applied Engineering Research, 10(2015) 1266-1270.

Google Scholar

[13] Myers, R.H. and D.C. Montgomery, Response Surface Methodology Process and product optimization using Designed Experiments. Second ed. John Wiley & Sons, Inc, 2001 Wiley Series in Probability and Statistics.

Google Scholar

[14] Tansel, I., M. Demetgul, H. Okuyucu, and A. Yapici, Optimizations of friction stir welding of aluminum alloy by using genetically optimized neural network. The International Journal of Advanced Manufacturing Technology, 48(2010) 95-101.

DOI: 10.1007/s00170-009-2266-6

Google Scholar