[1]
Jagadeesh G, Industrial Applications of Shock Waves, Journal of Aerospace Engineering, 222 (2007) 575-583.
Google Scholar
[2]
Nurick G. N and Martin J. B, Deformation of thin plates subjected to impulsive loading – a review, International Journal of Impact Engineering, 8 (1989) 159 -170.
DOI: 10.1016/0734-743x(89)90014-6
Google Scholar
[3]
Gupta N. K and Nagesh, Deformation and tearing of circular plates with varying support conditions under uniform impulsive loads, International Journal of Impact Engineering, 34 (2007) 42–59.
DOI: 10.1016/j.ijimpeng.2006.05.002
Google Scholar
[4]
R.G. Teeling-Smith and G.N. Nurick, The deformation and tearing of thin circular plates subjected to impulsive loads, International Journal of Impact Engineering, 11(1991) 77-91.
DOI: 10.1016/0734-743x(91)90032-b
Google Scholar
[5]
Skews B. W, Kosing O. E and Hattingh R. J, Use of a liquid shock tube as a device for the study of material deformation under impulsive loading conditions, Journal of Mechanical Engg. Science, 218 (2003) 39-51.
DOI: 10.1243/095440604322786938
Google Scholar
[6]
Kosing O. E, Barbosa F. J and Skews B. W, A new friction controlled piston actuated diaphragmless shock tube driver, Shock Waves, 9 (1999) 69-72.
DOI: 10.1007/s001930050140
Google Scholar
[7]
Stoffel Marcus, Evolution of plastic zones in the dynamically loaded plates using different elastic viscoplastic laws, International Journal of Solids and Structures, 41(2004) 6813–6830.
DOI: 10.1016/j.ijsolstr.2004.05.060
Google Scholar
[8]
Stoffel Marcus, Shape forming of shock wave loaded viscoplastic plates, Mechanics Research Communications, 33 (2006) 35–41.
DOI: 10.1016/j.mechrescom.2005.06.009
Google Scholar
[9]
Marcus Stoffel et al, Influence of structural hypotheses on the elastic viscoplastic response of shock wave loaded plates, Proceedings in Applied Mathematics and Mechanics, 11 (2011) 291-292.
DOI: 10.1002/pamm.201110137
Google Scholar
[10]
Erheng Wang, Nate Gardner and Arun Shukla, The blast resistance of sandwich composite with stepwise graded cores, International Journal of Solids and Structures, 46 (2009) 3492-3502.
DOI: 10.1016/j.ijsolstr.2009.06.004
Google Scholar
[11]
James LeBlanc and Arun Shukla, Underwater Explosive Response of Submerged, Air-backed Composite Materials: Experimental and Computational Studies, A. Shukla et al. (eds. ), Blast Mitigation: Experimental and Numerical Studies, Springer Science + Business Media New York 2014, pp.123-160.
DOI: 10.1007/978-1-4614-7267-4_5
Google Scholar
[12]
L.E. Perotti, R. Deiterding, K. Inaba, J. Shepherd, M. Ortiz, Elastic response of water-filled fiber composite tubes under shock wave loading, International Journal of Solids and Structures, 50 (2013) 473-486.
DOI: 10.1016/j.ijsolstr.2012.10.015
Google Scholar
[13]
Nagaraja S. R, J. K Prasad and G. Jagadeesh, Theoretical-experimental study of shock wave assisted metal forming process using diaphragmless shock tube, Proc. IMechE, Part G: J. Aerospace Engineering, 226 (2013) 1534-1543.
DOI: 10.1177/0954410011424808
Google Scholar
[14]
Fabio Ferrero, Ronald Meyer, Martin Kluge and Volkmar Schröder, A Parametric Study of Shock Wave Simulations with Help of COMSOL Multiphysics, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan.
Google Scholar
[15]
Anderson John David, Modern Compressible Flow–with historical perspective, McGraw - Hill Publishing Company, (1990).
Google Scholar