[1]
T. Liu, S. Rhee, and K. Lawson, A study of wear rates and transfer films of friction materials, Wear, 60 (1980) 1-12.
DOI: 10.1016/0043-1648(80)90246-x
Google Scholar
[2]
A. Wirth, D. Eggleston, and R. Whitaker, A fundamental tribochemical study of the third body layer formed during automotive friction braking, Wear, 179, (1994) 75-81.
DOI: 10.1016/0043-1648(94)90222-4
Google Scholar
[3]
W. Oesterle and I. Urban, Third body formation on brake pads and rotors, SAE Technical Paper (2004).
DOI: 10.4271/2004-01-2767
Google Scholar
[4]
K. Lee, J. Chern Lin, and C. Ju, Surface effect on braking behavior of PAN-pitch carbon-carbon composite, Wear, 199 (1996) 228-236.
DOI: 10.1016/0043-1648(96)06962-1
Google Scholar
[5]
M. Eriksson, J. Lord, and S. Jacobson, Wear and contact conditions of brake pads: dynamical in situ studies of pad on glass, Wear, 249 (2001) 272-278.
DOI: 10.1016/s0043-1648(01)00573-7
Google Scholar
[6]
V. Matějka, Y. Lu, Y. Fan, G. Kratošová, and J. Lešková, Effects of silicon carbide in semi-metallic brake materials on friction performance and friction layer formation, Wear, 265 (2008) 1121-1128.
DOI: 10.1016/j.wear.2008.03.006
Google Scholar
[7]
M. Halberstadt, S. Rhee, and J. Mansfield, Effects of potassium titanate fiber on the wear of automotive brake linings, Wear, 46 (1978) 109-126.
DOI: 10.1016/0043-1648(78)90114-x
Google Scholar
[8]
P. J. Blau, B. C. Jolly, J. Qu, W. H. Peter, and C. A. Blue, Tribological investigation of titanium-based materials for brakes, Wear, 263 (2007) 1202-1211.
DOI: 10.1016/j.wear.2006.12.015
Google Scholar
[9]
L. JIANG, Y. -l. JIANG, L. YU, N. SU, and Y. -d. Ding, Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling, Transactions of Nonferrous Metals Society of China, 22 (2012).
DOI: 10.1016/s1003-6326(11)61533-1
Google Scholar
[10]
M. Maleque, A. Atiqah, R. Talib, and H. Zahurin, New natural fibre reinforced aluminium composite for automotive brake pad, International Journal of Mechanical and Materials Engineering, 7 (2) (2012) 166-170.
Google Scholar
[11]
P. Gurunath and J. Bijwe, Friction and wear studies on brake-pad materials based on newly developed resin, Wear, 263 (2007) 1212-1219.
DOI: 10.1016/j.wear.2006.12.050
Google Scholar
[12]
R. Yun, P. Filip, and Y. Lu, Performance and evaluation of eco-friendly brake friction materials, Tribology International, 43 (11) (2010) 2010-(2019).
DOI: 10.1016/j.triboint.2010.05.001
Google Scholar
[13]
A. Yevtushenko and M. Kuciej, Temperature and thermal stresses in a pad/disc during braking, Applied Thermal Engineering, 30, (2010) 354-359.
DOI: 10.1016/j.applthermaleng.2009.09.015
Google Scholar
[14]
J. Thevenet, M. Siroux, and B. Desmet, Measurements of brake disc surface temperature and emissivity by two-color pyrometry, Applied Thermal Engineering, 30 (2010) 753-759.
DOI: 10.1016/j.applthermaleng.2009.12.005
Google Scholar
[15]
M. Siroux, A. -L. Cristol-Bulthé, Y. Desplanques, B. Desmet, and G. Degallaix, Thermal analysis of periodic sliding contact on a braking tribometer, Applied Thermal Engineering, 28 (2008) 2194-2202.
DOI: 10.1016/j.applthermaleng.2007.12.020
Google Scholar
[16]
H. Qi and A. Day, Investigation of disc/pad interface temperatures in friction braking, Wear, 262, (2007) 505-513.
DOI: 10.1016/j.wear.2006.08.027
Google Scholar
[17]
D. Zhengyong, P. Yong, and W. Heng, Optimization and control researches into the cooling system of pneumatic disc brake, in Applied Informatics and Communication, , 644-652 (2011).
DOI: 10.1007/978-3-642-23220-6_82
Google Scholar
[18]
R. Kawashima and T. Kanemoto, Automotive wheel with cooling fan for brake system and in-wheel motor, Journal of Mechanical Science and Technology, 27 (2013) 1687-1692.
DOI: 10.1007/s12206-013-0417-z
Google Scholar
[19]
K. M. Munisamy and R. Shafik, Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD), in IOP Conference Series: Earth and Environmental Science (2013) 012109.
DOI: 10.1088/1755-1315/16/1/012109
Google Scholar
[20]
A. Adamowicz and P. Grzes, Analysis of disc brake temperature distribution during single braking under non-axisymmetric load, Applied Thermal Engineering, 31 (2011) 1003-1012.
DOI: 10.1016/j.applthermaleng.2010.12.016
Google Scholar
[21]
A. Belhocine and M. Bouchetara, Thermomechanical modelling of dry contacts in automotive disc brake, International journal of thermal sciences, 60 (2012) 161-170.
DOI: 10.1016/j.ijthermalsci.2012.05.006
Google Scholar
[22]
P. Blau and J. McLaughlin, Effects of water films and sliding speed on the frictional behavior of truck disc brake materials, Tribology International, 36 (2003) 709-715.
DOI: 10.1016/s0301-679x(03)00026-4
Google Scholar
[23]
K. Kathiresan, J. Adhavan, and M. Venkatesan, Experimental Investigation on Droplet Cooling of Brakes, in Applied Mechanics and Materials, (2014) 1585-1589.
DOI: 10.4028/www.scientific.net/amm.592-594.1585
Google Scholar