High Throughput Graphene Oxide in Modified Hummers Method and Annealing Effect on Different Deposition Method

Article Preview

Abstract:

Graphene sheets offer extraordinary thermal, electronic and mechanical properties which could enhance the performance of the device for various applications. However, a large quantity production and the direct dispersion of graphene or graphite sheets in water without the assistance of dispersing agent has been considered to be a challenging issue. In this study, we reported that by introducing the functional group on the graphene basal plane started from natural graphite can readily form stable graphene oxide (GO) solution in a large quantity through modified hummers method. Structural and physiochemical properties of the GO were investigated with help of Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR). The effects of the annealing treatment on a GO surface were analyzed using a Semiconductor Parameter Analyzer (SPA) in order to obtain the electrical resistance measurement. Based on the thermal reduction results, the resistance of drop casting is greater than spray coating which indicates that, the drop casting method is more reliable to be used in any application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-147

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Geim, A. K. & Novoselov, K. S. Nature Mater. 6, 183–191 (2007).

Google Scholar

[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A (2004) Science 306666.

Google Scholar

[3] Jia, X., Campos-Delgado, J., Terrones, M., Meunier, V., & Dresselhaus, M. S. (2011). Nanoscale, 3(1), 86-95.

Google Scholar

[4] R. Ruoff, Graphene calling all chemists, Nat Nanotechnol 3(2008)10-11.

Google Scholar

[5] Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature nanotechnology, 4(4), 217-224.

Google Scholar

[6] Ciszewski, M., & Mianowski, A. (2013). Chemik, 67(4), 267-274.

Google Scholar

[7] Lerf A, He H, Forster M, Klinowski J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998; 102: 4477–82. 23.

DOI: 10.1021/jp9731821

Google Scholar

[8] Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D and Dekany I. Chem. Mater. 2006; 18: 2740–9.

Google Scholar

[9] Dreyer DR, Park S, Bielawski CW, Ruoff RS. Chem. Soc. Rev. 2010; 39: 228–40.

Google Scholar

[10] Botas C, Álvarez P, Blanco C, Gutiérrez MD, Ares P, Zamani R, et al. RSC Adv 2012; 2: 9643-50.

Google Scholar

[11] Bagri A, Mattevi C, Acik M, Chabal Y, Chhowalla M, Shenoy V. Nat Chem 2010; 2: 581-7.

DOI: 10.1038/nchem.686

Google Scholar

[12] McAllister MJ, Li J, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Chem Mater 2007; 19: 4397-404.

Google Scholar

[13] Chen, T., Zeng, B., Liu, J. L., Dong, J. H., Liu, X. Q., Wu, Z., .. & Li, Z. M. Journal of Physics: Conference Series (Vol. 188, No. 1, p.012051). IOP Publishing.

Google Scholar

[14] Li, J. L., Kudin, K. N., McAllister, M. J., Prud'homme, R. K., Aksay, I. A., & Car, R. (2006). Physical review letters, 96(17), 176101.

Google Scholar

[15] Ban, F. Y., Majid, S. R., Huang, N. M., & Lim, H. N. (2012). International Journal of Electrochemical Science, 7(5).

Google Scholar

[16] Shahriary, L., & Athawale, A. A. International Journal of Renewable Energy and Environmental Engineering ISSN 2348-0157, Vol. 02, No. 01.

Google Scholar

[17] Pei, S., & Cheng, H. M. (2012). Carbon, 50(9), 3210-3228.

Google Scholar

[18] Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). Chemical Society Reviews, 39(1), 228-240.

Google Scholar

[19] , 20] Botas, C., Álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R., .. & Menéndez, R. (2013). Carbon, 65, 156-164.

DOI: 10.1016/j.carbon.2013.08.009

Google Scholar