Evaluation of Thermal Properties of the Fe80Cr20 Nanostructure for Interconnect Application in High Temperature

Article Preview

Abstract:

Metallic Fe80Cr20 alloy in thermal stability analysis is investigated. Approached method is combination technique (milled and UT) of ball milling (milled) combined with ultrasonic technique (UT) which is not yet fully explored. From Energy Dispersive x-ray Spectroscopy (EDS) analysis resulted that the composition of 80 wt% Fe and 20 wt% Cr in individual particle was achieved at milled and UB 4.5 h sample. Higher thermal stability of treated samples approximately 63% at 1100 °C temperature operation which showed by milled and UT at 4.5 h when compared to raw material. Combination technique shown high prospect to advance exploration in improving thermal stability which suitable for interconnect application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-197

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Sachitanand, M. Sattari, J.E. Svensson, J. Froitzheim: Int J Hydrogen Energ. Vol. 38 Issue 35 (2013), p.1.

Google Scholar

[2] D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner: Chem. Soc. Rev. Vol. 37 (2008), p.1568.

Google Scholar

[3] M. Kornely, A. Neumann, N.H. Menzler, A. Leonide, A. Weber, E. Ivers-Tiffe´e: J. Power Sources. Vol. 196 (2011), p.7203.

DOI: 10.1016/j.jpowsour.2010.10.033

Google Scholar

[4] B.F.O. Costa, G. Le Caer, J.M. Loureiro, V.S. Amaral: J. Alloys Compd. Vol. 424 (2006), p.131.

Google Scholar

[5] C.D. Ozlem, M. Ciftcioglu: Powder Technol. Vol. 228 (2012), p.231.

Google Scholar

[6] W.J. Quadakkers, A.J. Piron, V. Shemet, and L. Singheiser: High Temp. Vol. 20 (2003), p.115.

Google Scholar

[7] C.C. Benjamin, in: Fabrication and characterization of solid oxide fuel cell interconnect alloys, PhD thesis, Georgia Institute of Technology Atlanta, Georgia (2004).

Google Scholar

[8] J.W. Kim, A. Virkar, K.Z. Fung, K. Mehta, and S.C. J. Singhal: Electrochem. Soc. Vol. 46 (1999), p.69.

Google Scholar

[9] H. Saryanto, D. Sebayang, and P. Untoro: Ion Implantation process of lanthanum and titanium dopants into a substrate of Fe80Cr20, (Proceedings of the Malaysian Metallurgical Conference 09 (MMC, 09), Universiti Malaysia Perlis, 2009).

Google Scholar

[10] D.S. Khaerudini, D. Sebayang, S. Mahzan and P. Untoro: Corros Eng Sci Techn. Vol. 47(7) (2012), p.536.

Google Scholar

[11] S.J. Geng, J.H. Zhu and Z.G. Lu: Solid State Ionics Vol. 177 (2006), p.559.

Google Scholar

[12] A. Fnidiki, C. Lemoine and J. Teillet: B Condens Matter B Vol. 357 (2005), p.319.

Google Scholar

[13] K. Hideto and K. Kawamura: Solid State Ionics Vol. 168 (2004), p.13.

Google Scholar

[14] T. Horita, Y. Xiong, K. Yamaji, N. Sakai, and Yokokawa: J. Power Sources Vol. 118(1) (2003), p.35.

Google Scholar

[15] K. Huang, P. Hou and J. Goodenough: Solid State Ionics Vol. 129 (2000), p.237.

Google Scholar

[16] N. Krisztian and E.D. Morse: Nano Today Vol. 5 (2010), p.99.

Google Scholar

[17] H. Puga, S. Costa, J. Barbosa, S. Ribeiro and M. Prokic: J. Mater. Process. Technol. Vol. 211 (2011), p.1729.

Google Scholar

[18] D. Sebayang, H. Saryanto, P. Untoro, D.S. Khaerudini: Effect of depth implantation of lanthanum on the oxidation of Fe80Cr20 based alloys. World Congress on Engineering (WCE), London, UK (2010).

Google Scholar

[19] S.K. Deni, M.A. Othman, S. Mahzan, U. Pudji and D. Sebayang: Procedia Eng. 23 (2011), p.760.

Google Scholar

[20] D. Sebayang, Y. Putrasari, A. Firdianto, H. Sulaiman A. Othman, and P. Untoro: Advanced Materials Research Vol. 181-182 (2011), p.501.

Google Scholar

[21] C. Suryanarayana: Prog. Mater Sci. Vol. 46 (2001), p.1.

Google Scholar

[22] V.S. Ranjani, A.P. James, P.F. Edward, S. Ming-Shing and L.M. Angela: Appl. Surf. Sci. Vol. 152 (1999), p.219.

Google Scholar