Aligned Carbon Nanofibres (CNFs) at the Graphene/Nickel Thin Film Edge

Article Preview

Abstract:

This work is a preliminary study to investigate the growth of carbon nanofibres (CNFs) on monolayer graphene. The growth of CNFs on graphene has been performed by chemical vapour deposition (CVD) using ferrocene as the catalyst precursor and acetone as the carbon source. Ferrocene in acetone is introduced to the system via spray coating onto the substrate. Graphene film used in this study is grown on nickel (Ni) thin film, which is confirmed to be monolayer. Aligned CNTs are unintentionally obtained, however only at the graphene/Ni thin film edges.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-215

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Sulley, C-60-buckminsterfullerene. Nature 318, 162, (1985).

Google Scholar

[2] R. Marina, Noverl Catalytic Application of Carbon Nanofibers on Sintered Metal Fibers Filters as Structured Supports, PhD Thesis, E'cole Polytechnique Federale De Lausanne, (2008).

Google Scholar

[3] A. K. Yoong, H. Takuya, R. Morinobu, M. S. Dresselhaus, Carbon Nanofibers, Springer Handbook of Springer handbook of Nanomaterials, (2011).

Google Scholar

[4] A. K. Geim, K. S. Novoselov, The Rise of Graphene, Nature Mat. 6, 183, (2007).

Google Scholar

[5] A. H. Castro neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic Properties of graphene, Rev. Mod. Phys. 81, 109, (2009).

DOI: 10.1103/revmodphys.81.109

Google Scholar

[6] J. S. Bunch, Mechanical and Electrical properties of Graphene Sheets, PhD Thesis, Cornell University, (2008).

Google Scholar

[7] Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A-R O. Raji, C. Kittrell, R. H. Hange, J. M. Tour, A Seamless Three Dimensional Carbon Nanotube Graphene Hybrid Material, Nature Comm. 3, 1225, (2012).

DOI: 10.1038/ncomms2234

Google Scholar

[8] L. Peng, Y. Feng, P. Lv, D. Lei, Y. Shen, Y. Li, W Feng, Transparent Conductive and Flexible Multiwalled Carbon Nanotubes/Graphene Hybrid Electrods with Two Dimensional Microstructures, J. Phys. Chem C 116 (8), 4970, (2012).

DOI: 10.1021/jp209180j

Google Scholar

[9] R. K. Sahoo, P. Jeyapandiarajah, K. Devi Chandrasekhar, B. S. S. Daniel, A. Verimadhar, S. B. Sant, C. Jacob, J. Alloys. & Compounds 615, 348, (2014).

Google Scholar

[10] M. Kumar & Y. Ando, Chemical Vapour Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Nanoscience & Nanotech. 10, 3739, (2010).

DOI: 10.1166/jnn.2010.2939

Google Scholar

[11] K. Koziol, B. O. Boskavic, N. Yahya, Synthesis of Carbon Nanostructures by CVD Method, Carbon & Oxide NanoStructures, Adv. Struc. Mater. 5, 23, (2010).

DOI: 10.1007/8611_2010_12

Google Scholar

[12] A. V. Melechko, R-y Desikan, T. E. Mcknight, K. L. Klein, P. D. Rach, Synthesis of Vertically Aligned Carbon nanofibres for Interfacing with Live Systems, J. Phys. D: Appl. Phys. 42, 193001, (2009).

DOI: 10.1088/0022-3727/42/19/193001

Google Scholar

[13] D. P. Hunley, S. L. Johnson, J. K. Stieha, A. Sundararajan, A. T. Meacham, I. N. Ivanov, and D. R. Strachan, Crystallographically Aligned Carbon Nanotubes Grown on Few-Layer Graphene Films, ACS Nano 8, 6403, (2011).

DOI: 10.1021/nn201573m

Google Scholar

[14] Z. P. Huang, D. Z. Wang, J. G. Wen, M. Sennett, H. Gibson, and Z. F. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, Appl. Phys. A: Mat. Sc. & Processing 74, 387, (2002).

DOI: 10.1007/s003390101186

Google Scholar

[15] M. Khavarian and S. Chai, Effects of Growth Parameters on the Morphology of Aligned Carbon Nanotubes Synthesized by Floating Catalyst and the Growth Model, Fullerenes, Nanotubes and Carbon Nanostructures 21: 9, 765, (2013).

DOI: 10.1080/1536383x.2012.654544

Google Scholar