Analysis of the Subsonic and Supersonic Flow Using Analytical and Numerical Methods

Article Preview

Abstract:

The article presents the analysis of the 1D flow of compressible fluid by means of analytical and numerical methods. The results from the solution showed that the calculation of dimensionless velocity for particular flow conditions varies in the area of subsonic flow only a very little, when using both methods. It was found that the dependence of dimensionless velocity on the relative duration of the investigated tunnel applies universally. For any proportional value of the tunnel length x/L and the constant ratio of outlet and inlet cross section of the tunnel level equal to 0.6474, the course of the dimensionless velocity for each tunnel, which satisfies the above condition, will always be the same. This means that also the nature of flow in any such tunnel will exhibit the same properties. This finding provides new knowledge from the analysis of air flow through a channel with a variable flow cross section.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-26

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Kucaba-Piêtal, Contemporary methods and trends for calculating wind tunnel interference corrections, Institute of Aeronautics and Applied Mechanics: Bulletin Warsaw University of Technology. 6 (1997) 270-273.

Google Scholar

[2] T. Wright, Fluid Machinery: Performance, Analysis, and Design. CRC Press, Cornelia, Georgia, USA, (1999).

Google Scholar

[3] W. W. Peng, Fundamentals of Turbomachinery. John Wiley and Sons, Fresno, California, USA, (2007).

Google Scholar

[4] R. Dvořák, Jednorozměrné proudění stlačitelné tekutiny. Zpráva Z – 1199/94, UT AUČR, (1994).

Google Scholar

[5] M. Čarnoguská, P. Šafařík, T. Hyhlík, Odvodenie zákona mechanickej podobnosti prúdenia rozmerovou analýzou. Acta Mechanica Slovaca. 3 (2000) 20-24.

Google Scholar

[6] M. Čarnogurská, M. Příhoda, D. Popčáková, Modelling the flow conditions in the tunnel and its reduced model. Journal of Mechanical Science and Technology. 24 (2010) 2479-2486. DOI 10. 1007/s12206-010-0810-9.

DOI: 10.1007/s12206-010-0810-9

Google Scholar

[7] M. Kozubková, S. Drábková, P. Šťáva, Matematické modely nestlačitelného a stlačitelného proudění. Metoda konečných objemů. Ostrava, VŠB-TU, (1999).

Google Scholar

[8] C. Pozrikidis, Fluid dynamics: Theory, Computation and numerical Simulation, Kluwer Academic Publishers, Massachusetts, USA, (2009).

Google Scholar

[9] A. Shimanovsky, A. Kuzniatsova, A. Sapietová, Modeling of Newtonian and Non-Newtonian Liquid Sloshing in Road Tanks while Braking. Applied Mechanics and Mechatronics. 611 (2014) 137-144. DOI: 10. 4028/www. scientific. net/AMM. 611. 137.

DOI: 10.4028/www.scientific.net/amm.611.137

Google Scholar

[10] P. Nemec, M. Malcho, M. Smitka, J. Matušov, Performance parameters of closed loop thermosyphon. Communications. 14 (2012) 53-57.

DOI: 10.26552/com.c.2012.4a.53-57

Google Scholar

[11] J. Kalčík, K. Sýkora, Technická termomechanika, Academia Praha, (1973).

Google Scholar

[12] T. Brestovič, N. Jasminská, M. Čarnogurská, M. Puškár, M. Kelemen, M. Fiľo, Measuring of thermal characteristics for Peltier thermopile using calorimetric method. Measurement. (53), 2014, 40-48.

DOI: 10.1016/j.measurement.2014.03.021

Google Scholar

[13] S. Medvecká-Beňová, I. Virgala, M. Kelemen, Ľ. Miková, Influence of material and gear parameters on the safety of gearing in metallurgical industry, Metalurgia. 54 (2015) 224- 226.

Google Scholar

[14] M. Raudensky, M. Pohanka, J. Horsky, Heat transfer coefficient estimation by inverse conduction algorithm. International Journal of Numerical Methods for Heat & Fluid Flow. 3 (1993) 257-266.

DOI: 10.1108/eb017530

Google Scholar