The Effect of Magnetic Field on Magnetorheological Composites - Artificial Neural Network Based Modelling and Experiments

Article Preview

Abstract:

Looking for new applications of the available materials, such as magnetorheological elastomers (MERs) is an important element of machine design process. To this end it is necessary to determine their fundamental mechanical properties, including Young’s modulus and shear modulus. These properties are determined experimentally by testing the material in compression, tension and shear. In the case of the analysed group of materials the above-mentioned constants depend, inter alia, on the parameters of magnetic field acting on them. Therefore, it is necessary to determine the character and the extent of variation of the mechanical properties as a function of the physical constants characterising the active magnetic field, namely magnetic flux and magnetic intensity (field strength).This paper presents the results of static compression tests carried out on magnetorheological elastomers. The parameters measured during the static compression test were force and displacement at a pre-set magnetic flux. The maximum strength of the induced magnetic field was limited by the design parameters of the test set-up. In order to determine the behaviour of the material at greater values of magnetic strength and flux the properties of a real material were modelled with a neural network. The simulation was carried out using a simple, one-layer neural network. The chosen network training approach was error backpropagation. This approach enables approximation and predicting of changes of the properties of the tested material. The output results will enable deriving an analytical model of the tested MREs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-336

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kallio M.: The elastic and damping properties of magnetoreheological elastomers, VTT Technical Research Centre o f Finland, Espoo 2005, ISBN 951-38-6639-4.

Google Scholar

[2] Lewandowski D.: Właściwości tłumiące kompozytów magnetoreologicznych. Badania, modele, identyfikacja., praca doktorska, Politechnika Wrocławska, Instytut Materiałoznawstwa i Mechaniki Technicznej, Wrocław (2006).

Google Scholar

[3] Ruddy C., Ahearne E., Byrne G.: A review of magnetoreheological elastomers: properties and applications, http: /www. ucd. ie/mecheng/ams/news_items/Cillian%20Ruddy. pdf, (dostęp 05. 06. 2014).

Google Scholar

[4] Boczkowska A., Awietjan S.: Uretanowe elastomery magnetoreologiczne aktywowane polem magnetycznym [Urethane Magnetorheological Elastomers Activated by MagneticField], in Polimery, magazine, Warsaw 2009, Vol. 54, pp.26-30.

DOI: 10.14314/polimery.2009.26

Google Scholar

[5] Bednarek S.: Elastomery magnetoreologiczne - właściwości, technologia i zastosowania [Magnetorheological Elastomers – Properties, Production and Application], in Inżynieria Materiałowa, magazine, Warsaw, 2003, year XXIV, No. 1, pp.39-44.

Google Scholar

[6] Boczkowska A., Awietjan S.: Smart composites of urethane elastomers with carbonyl iron, Journal of Materials Science, August 2009, Vol. 44, Issue 15, pp.4104-4111.

DOI: 10.1007/s10853-009-3592-7

Google Scholar

[7] Abramchuk S.S., Grishin D.A., Kramarenko E. Yu., Stepanov G.V., Khokhlov A.R.: Effect of a homogeneous magnetic field on the mechanical behavior of soft magnetic elastomers under compression, Polymer Science Series A, February 2006, Vol. 48, Issue 2, pp.138-145.

DOI: 10.1134/s0965545x06020064

Google Scholar

[8] Dong X., Yu M., Liao C., Chen W.: A new variable stiffness absorber based on magneto-rheological elastomers, http: /www. tnmsc. cn/down/upfile/soft/20091127/16-p.0611. pdf, (dostęp: 05. 06. 2014).

Google Scholar

[9] Gordaninejad F., Wang x., Mysore P.: Behavior of thick magnetorheological elastomers, Journal of Intelligent Material Systems and Structures, June 2012, Vol. 23, no. 9 1033-1039.

DOI: 10.1177/1045389x12448286

Google Scholar

[10] Honczarenko J.: Roboty przemysłowe Budowa i zastosowanie, Warszawa 2004, Wydawnictwa Naukowo-Techniczne, ISBN 83-204-2929-3.

Google Scholar

[11] Manipulatory i Roboty Przemysłowe, Red. Olszewski M., Warszawa 1985, Wydawnictwa Naukowo-Techniczne, ISBN 83-204-0654-4.

Google Scholar

[12] Ghaboussi J., Pecknold D. A., Zhang M., Haj-Ali R. M.: Autoprogressive training of neural network constitutive models, International journal for numerical methods in engineering, volume 42, issue 1, pages 105–126, 15 may (1998).

DOI: 10.1002/(sici)1097-0207(19980515)42:1<105::aid-nme356>3.0.co;2-v

Google Scholar

[13] Information on http: /www. mathworks. com/help/nnet/ug/multilayerneuralnetworkarchitecture. html.

Google Scholar

[14] Information on http: /www. mathworks. com/help/nnet/ref/trainlm. html.

Google Scholar

[15] Ghaboussi J., Garrett Jr., J. and Wu, X.: Knowledge Based Modeling of Material Behavior with Neural Networks, Journal of Engineering Mechanics, Volume 117, Issue 1, January 1991, 132-153.

DOI: 10.1061/(asce)0733-9399(1991)117:1(132)

Google Scholar

[16] Hong-hui Z., Chang-rong L., Wei-min C.: Neural Network Modeling of a Magnetorheological Damper, Information on http: /www. paper. edu. cn/selfs/downpaper /zhanghonghui-self-200806-5.

Google Scholar