Simulation of Temperature Fields in the Transport Container

Article Preview

Abstract:

This article discusses the distribution of temperature in a transport container for spent nuclear fuel due to the generation of residual heat. ANSYS CFX simulation software was used to determine the temperature fields. The container is constructed of thick-walled carbon steel. Fins were provided on the outer casing of the container for better heat dissipation. Numerical simulations of temperature fields will be performed on the transport container with C-30 type designation. A container with a flow of water and nitrogen within the casket was considered during the performance of numerical simulation. The results of numerical simulations define the distribution of temperature fields, subject to adhering to storage conditions which prevent surface temperatures exceeding permissible values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-87

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Brestovič, N., Jasminská, Ľ, Fedorko, Jadrová energetika, 2013, p.433.

Google Scholar

[2] J. Rajzinger, Calculation of maximum water content in various natural gases by using modified Peng-Robinson equation of state, Communications, 14, 4A (2012), 29-35.

DOI: 10.26552/com.c.2012.4a.29-35

Google Scholar

[3] Z., Michalec, B., Taraba, M., Bojko, M., Kozubková, CFD modelling of the low-temperature oxidation of coal. Archivum Combustions, Vol. 30, No. 3 2010, pp.133-144.

Google Scholar

[4] K. Ferstl, M. Masaryk, Heat transfer book, STU Bratislava 2010, pp.53-63.

Google Scholar

[5] F. Trebuňa, F. Šimčák, J. Bocko, Failure analysis of storage tank, Engineering Failure Analysis. 1, 2009, pp.26-38.

DOI: 10.1016/j.engfailanal.2007.12.005

Google Scholar

[6] F. Trebuňa, F. Šimčák, Pružnosť, pevnosť a plastickosť v príkladoch. Košice, 2000, p.

Google Scholar

[7] P. Purcz, P, Communication complexity and speed-up in the explicit difference method, Parallel Process, 16 (3), 2006, p.313–321.

DOI: 10.1142/s0129626406002666

Google Scholar

[8] M., Bojko et al, Characteristics of a mathematical model of the spiral heat exchanger using CFD ANSYS Fluent, Liberec, 2011. p., 17-19.

Google Scholar

[9] R., Pyszko, M. Příhoda, M. Velička, Method for determining the thermal boundary condition in the CC mould for numeric models, Proceedings of conference METAL, Ostrava 2010, 7 p.

Google Scholar

[10] A., Kapjor, J., Jandačka, M., Malcho, Š., Papučík, Intensification of Heat Transport from the Floor Convector at Given Geometry and the Way of Use, XXIX. medzinárodná konferencia Setkání kateder mechaniky tekutin a termomechaniky; 2010, pp.101-104.

Google Scholar