Computing of Poles of Linear Antennas from Noisy Responses

Article Preview

Abstract:

This paper deals with the issue of the natural frequencies of simple linear antennas. Analytical and numerical ways of determining such frequencies are discussed. We focused on the calculation of natural frequencies with data disorder and we have shown how this data disorder affects the location correctness of such frequencies. What is more, using SEM model and the poles concept, the boundary value of data disorder necessary to determine the correct location of natural frequencies is given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

334-341

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. E. Baum: On the Use of Contour Integration for Finding Poles, Zeros, Saddles and Other Function Values in the Singularity Expansion Method, Air Force Weapons Laboratory, (1974).

Google Scholar

[2] B. K. Singaraju, D. V. Giri, and C. E. Baum: Further Developments in the Application of Contour Integration to the Evaluation of the Zeros of Analytic Functions and Relevant, Computer Programs. Air Force Weapons Laboratory, (1976).

Google Scholar

[3] J. M. Meyers, S. S. Sandler, and T. T. Wu, Electromagnetic resonances in a straight wire, IEEE Trans. Antennas Propag., vol. 59, no. 1, Jan. (2011).

Google Scholar

[4] S. W. Lee and B. Leung: The Natural Resonance Frequency of a Thin Cylinder and its Application to EMP, Studies Interaction Notes, Note 96, (1972).

Google Scholar

[5] L. A. Weinstein: The Theory of Diffraction and the Factorization Method. Boulder, CO: The Golem Press, (1969).

Google Scholar

[6] L. Shen, T. Wu, and R. W. P. King: A simple formula of current in dipole antennas, IEEE Trans. Antennas Propag., vol. AP–16, no. 5, (1968).

DOI: 10.1109/tap.1968.1139241

Google Scholar

[7] A. Hoorfar and D. C. Chang, Analytic determination of the transient response of a thin-wire antenna based upon an SEM representation, IEEE Trans. Antennas Propag., vol. AP-30, no. 6, Nov. (1982).

DOI: 10.1109/tap.1982.1142959

Google Scholar

[8] E. Hallén: Über Die Elektrischen Schwingungen in Drahtförmigen Leitern" ("On the Electrical Oscillations in Wire-Like Conductors, ). Uppsala, Sweden, Uppsala Univ. Ärsskritt, 1930, vol. 1, p.1–102.

Google Scholar

[9] C. J. Bouwkamp: Hallén's theory for a straight, perfectly conducting wire, used as a transmitting or receiving aerial, Physica IX, vol. 7, p.609–631, Jul. (1942).

DOI: 10.1016/s0031-8914(42)80028-2

Google Scholar

[10] L. Marin and T. K. Liu: A simple way of solving transient thin-wire problems, Radio Sci., vol. 1, no. 2, p.149–155, Feb. (1976).

DOI: 10.1029/rs011i002p00149

Google Scholar

[11] B. Gustavsen, A. Semlyen: Rational approximation of frequency domain responses by Vector Fitting, IEEE Transactions on Power Delivery, 1999, vol. 14, no. 3, pp.1052-1061.

DOI: 10.1109/61.772353

Google Scholar

[12] B. Gustavsen: Improving the pole relocating properties of Vector Fitting, IEEE Transactions on Power Delivery, 2006, vol. 21, no. 3, pp.1587-1592.

DOI: 10.1109/tpwrd.2005.860281

Google Scholar

[13] S. Grivet-Talocia, M. Bandinu: Improving the convergence of Vector Fitting for equivalent circuit extraction from noisy frequency responses, IEEE Transactions on Electromagnetic Compatibility, 2006, vol. 48, no. 1, pp.104-120.

DOI: 10.1109/temc.2006.870814

Google Scholar

[14] Se-Jung Moon, Xiaoning Ye, A. Cangellaris: Efficient time-domain Vector Fitting for broadband interconnect modelling, IEEE International Symposium on Electromagnetic Compatibility (EMC), 25-30 July 2010, Fort Lauderdale, FL, pp.563-567.

DOI: 10.1109/isemc.2010.5711338

Google Scholar

[15] R. Prony: Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures, " Journal de l, École Polytechnique Floréal et Plairial, an III (1795), vol. 1, cahier 22, 24-76.

DOI: 10.1017/cbo9780511702280.018

Google Scholar

[16] M. L. Blaricum, R Mittra: A technique for extracting the poles and residues of a system directly from its transient response, IEEE Transactions on Antennas and Propagation, 1975, vol. 23, no. 6, pp.771-781.

DOI: 10.1109/tap.1975.1141184

Google Scholar

[17] S. M. Rao: Time Domain Electromagnetics, Academic Press, London, (1999).

Google Scholar

[18] B.H. Jung, T.K. Sarkar: Time-domain electric-field integral equation with central finite difference, Microwave and Optical Technology Letters, 2001, vol. 31, no. 6, pp.429-434.

DOI: 10.1002/mop.10055

Google Scholar