Study of a Heat Pump for Simultaneous Cooling and Desalination

Article Preview

Abstract:

Access to freshwater and energy resource management are two of the major concerns of the next decades. The global warming indicator, the decrease of rainfalls and the growing energy demand for cooling are correlated in the most populated agglomerations of the world. For industrial and social purposes, it seems vital to develop energy efficient systems for cooling and desalination. A heat pump can produce energy for space cooling and heat for desalination. Among the different desalination systems available, membrane distillation seems the most suitable solution to the condensing temperature level of a standard heat pump.This article presents the development of a model of heat pump for simultaneous cooling and desalination by air-gap membrane distillation. The model was first developed using EES software and validated with experimental results from our laboratory and from the literature. The desalination unit was then optimised by numerical means in terms of dimensions and operating conditions using a bi-dimensional model with Matlab. A coupled system with a heat pump was finally simulated. The objective is to estimate the freshwater production depending on the cooling loads of a refrigerator placed in a building submitted to the conditions given by a weather data file in the Trnsys environment. The energy consumptions are compared to those of a standard reverse osmosis plant producing the same amount of freshwater associated to a chiller of same cooling capacity as the heat pump. The results show that the heat pump for simultaneous cooling and desalination offers interesting perspectives.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-159

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] http: /www. citypopulation. de.

Google Scholar

[2] T.F. Stocker, D. Qin, G. -K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013).

DOI: 10.1017/cbo9781107415324.004

Google Scholar

[3] S.A. Klein, TRNSYS 17: A Transient System Simulation Program, Solar Energy Laboratory, University of Wisconsin, Madison, USA, http: /sel. me. wisc. edu/trnsys (2010).

Google Scholar

[4] M. Sivak, Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries. Energy Policy, 37 (2009) 1382-1384.

DOI: 10.1016/j.enpol.2008.11.031

Google Scholar

[5] C. Li, Y. Goswami, E. Stefanakos, Solar assisted sea water desalination: a review, Renewable and Sustainable Energy Reviews 19 (2013) 136–163.

DOI: 10.1016/j.rser.2012.04.059

Google Scholar

[6] A.M. Alklaibi, N. Lior, Membrane-distillation desalination: status and potential, Desalination 171 (2004) 111-131.

DOI: 10.1016/j.desal.2004.03.024

Google Scholar

[7] A.M. Alklaibi, N. Lior, Transport analysis of air-gap membrane distillation, Journal of Membrane Science 255 (2005) 239-253.

DOI: 10.1016/j.memsci.2005.01.038

Google Scholar

[8] J.P. Mericq, Approche intégrée du dessalement d'eau de mer : Distillation membranaire sous vide pour la réduction des rejets salins et possibilités de couplage avec l'énergie solaire, Thèse de doctorat, INSA de Toulouse, France (2009).

DOI: 10.5150/cmcm.2017.018

Google Scholar

[9] C. Charcosset, A review of membrane processes and renewable energies for desalination, Desalination 245 (2009) 214–231.

DOI: 10.1016/j.desal.2008.06.020

Google Scholar

[10] P. Byrne, J. Miriel, L. Serres, R. Ghoubali, Etude simulée d'un système de dessalement d'eau de mer et de production de froid par thermofrigopompe couplée à des panneaux solaires, 2ème Colloque International Francophone en Energétique et Mécanique, CIFEM 2012, Ouagadougou, Burkina Faso (2012).

DOI: 10.18006/2015.3(3).288.297

Google Scholar

[11] P. Byrne, Y. Ait Oumeziane, L. Serres, J. Miriel, Etude simulée d'un système de distillation membranaire pour le dessalement d'eau de mer couplé à une thermofrigopompe, 3ème Colloque International Francophone en Energétique et Mécanique, CIFEM 2014, Moroni, Comores (2014).

Google Scholar

[12] P. Byrne, J. Miriel, Y. Lenat, Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2 as a working fluid, International Journal of Refrigeration 32 (2009) 1711-1723.

DOI: 10.1016/j.ijrefrig.2009.05.008

Google Scholar

[13] P. Byrne, J. Miriel, Y. Lenat, Experimental study of an air-source heat pump for simultaneous heating and cooling – part 1: basic concepts and performance verification, Applied Energy 88 (2011) 1841-1847.

DOI: 10.1016/j.apenergy.2010.12.009

Google Scholar

[14] P. Byrne, J. Miriel, Y. Lenat, Experimental study of an air-source heat pump for simultaneous heating and cooling – part 2: dynamic behaviour and two-phase thermosiphon defrosting technique, Applied Energy 88 (2011) 3072-3078.

DOI: 10.1016/j.apenergy.2011.03.002

Google Scholar

[15] P. Byrne, J. Miriel, Y. Lenat, Modelling and simulation of a heat pump for simultaneous heating and cooling, Building Simulation: An International Journal 5 (2012) 219–232.

DOI: 10.1007/s12273-012-0089-0

Google Scholar

[16] P. Byrne, R. Ghoubali, J. Miriel, Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants, International Journal of Refrigeration, International Journal of Refrigeration 41 (2014) 1-13.

DOI: 10.1016/j.ijrefrig.2013.06.003

Google Scholar

[17] R. Ghoubali, P. Byrne, J. Miriel, F. Bazantay, Simulation study of heat pumps for simultaneous heating and cooling coupled to buildings, Energy and Buildings 72 (2014) 141-149.

DOI: 10.1016/j.enbuild.2013.12.047

Google Scholar

[18] F.A. Banat, Membrane distillation for desalination and removal of volatile organic compounds from water, Doctoral Thesis, McGill University, Montreal, Canada (1994).

Google Scholar