Methods to Reduce the Operating Temperature of Photovoltaic Cells

Article Preview

Abstract:

The article includes an overview of the effectiveness of different generations of photovoltaic cells, the temperature dependence of the electrical efficiency and methods of integration into the building envelope. Furthermore, the article focuses on experimental and simulation of proven methods to reduce the operating temperature of photovoltaic cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-229

Citation:

Online since:

January 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] SKOPLAKI, E. – PALYVOS, J.A. (2009). On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/ power correlations. In Solar Energy 83 (s. 614-624).

DOI: 10.1016/j.solener.2008.10.008

Google Scholar

[2] KRAUTER, S. –H. –W. (1994). Simulation of thermal and optical performance of PV modules. In Renewable Energy 5.

Google Scholar

[3] TAGUCHI, M. – TERAKAWA, A. – MARUYAMA, E. – TANAKA, M. (2005). Obtaining a higher Voc in HIT cells. In Progress in Photovoltaics: Research and Applications 13 (s. 481-488).

DOI: 10.1002/pip.646

Google Scholar

[4] NISHIOKA, K. – TAKAMOTO, T. – AGUI, T. – KANEIWA, M. – URAOKA, Y. – FUKYUKI, T. (2006).

Google Scholar

[5] HUANG, M.J. – EAMES, P.C. – NORTON, B. (2004). Thermal regulation of building-integrated photovoltaics using phase change materials. In International Journal of Heat and Mass Transfer 47 (s. 2715-2733).

DOI: 10.1016/j.ijheatmasstransfer.2003.11.015

Google Scholar

[6] HUANG, M.J. – EAMES, P.C. – NORTON, B. (2006). Experimental performance of phase change materials for limiting temperature rise building integrated photovoltaics. In Journal of Solar Energy 80.

DOI: 10.1016/j.solener.2005.10.006

Google Scholar

[7] HUANG, M.J. (2011). The effect of using two PCMs on the thermal regulation performance of BIPV systems. In Solar Energy Materials and Solar Cells 95 (s. 957-963).

DOI: 10.1016/j.solmat.2010.11.032

Google Scholar

[8] TRIPANAGNOSTOPOULOS, Y. (2007). Aspects and improvements of hybrid photovoltaic/thermal solar energy systems. In Solar Energy 81 (s. 1117-1131).

DOI: 10.1016/j.solener.2007.04.002

Google Scholar

[9] JUNGWOO, P. – TAEYEON, K. – SEUNG-BOK, L. (2014). Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. In Solar Energy 105 (s. 561-574).

DOI: 10.1016/j.solener.2014.04.020

Google Scholar

[10] HASAN, A. – McCORMACK, S.J. – HUANG, M.J. – NORTON, B. (2010). Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. In Solar Energy 84 (s. 1601-1612).

DOI: 10.1016/j.solener.2010.06.010

Google Scholar