[1]
David 1. G. Jones, Viscoelastic Vibration Damping. John Wiley and Sons Ltd, Chichester, (1988).
Google Scholar
[2]
Dunwoody J., Ogden W. R. (2002). On the thermodynamic stability of elastic heat-conducting solids subject to a deformation-temperature constraint, Math. and Mech. of Solids, 7, 285-306.
DOI: 10.1177/108128602027736
Google Scholar
[3]
Holzapfel, A. G. (1996) On Large Strain Viscoelasticity: Continuum Formulation and FE Applic. to Elastom. Structures. Int. J. for Numerical Methods in Engineering. 39, 22, 3903-3926.
DOI: 10.1002/(sici)1097-0207(19961130)39:22<3903::aid-nme34>3.0.co;2-c
Google Scholar
[4]
Boukamel, A. et al. (2001). A thermo-viscoelastic model for elastomeric behaviour and its numerical application. Archive of Applied Mechanics, Volume 71, Issue 12, pp.785-801.
DOI: 10.1007/s004190100191
Google Scholar
[5]
Aidy, A., Hosseini, M., Sahari, B. (2010). Review of Constitutive Models for Rubber-Like Materials. American Journal of Engineering and Applied Sciences, Vol. 3, no. 1, pp.232-239.
Google Scholar
[6]
Behnke, R. & Kaliske, M. (2013). Computation of energy dissipation in visco-elastic materials at finite deformation. Proc. Appl. Math. Mech. 13, 159 – 160.
DOI: 10.1002/pamm.201310075
Google Scholar
[7]
P. Šulc, L. Pešek, V. Bula, J. Cibulka, J. Košina, Experimentální analýza torzních kmitů tvrdých pryží při velkých deformacích, Collquim Dymamesi (2014) 73-80.
Google Scholar
[8]
Pešek, L., Půst, L., Balda, M., Vaněk, F., Svoboda, J., Procházka, P., Marvalová, B. (2008): Investigation of dynamics and reliability of rubber segments for resilent wheel, Procs. of ISMA 2008, KU Leuven, pp.2887-2902.
Google Scholar
[9]
Šulc P., Pešek L., Bula V.: Identification of Rubber Thermo-Mechanical Constants from a Beam Flexural Vibration, International Review of Mechanical Engineering (I. RE.M. E), Vol. 6, N. 2, ISSN 1970-8734, Special Issue on Heat Transfer, February 2012, pp.188-193.
Google Scholar
[10]
Schätz M., Vondráček P.: Polymer testing, Institute of Chemical Technology, Prague, (1988).
Google Scholar
[11]
Pešek, L., Půst, L., Šulc, P. (2007). FEM Modeling Of Thermo-Mechanical Interaction In Pre-Pressed Rubber Block, Engineering Mechanics. Roč. 14, 1/2, s. 3-11.
Google Scholar
[12]
Pešek, L., Půst, L., Šulc, P. (2007). Thermo-mechanical properties of compressed rubber block. In IFToMM 2007. Besancon : Comité Francais pour la Promotion de la Science des Mécanismes et des Machines, s. 868-873.
Google Scholar
[13]
Pešek, L. , Půst, L. , Šulc, P. (2007). FEM modeling of thermo mechanical interaction in pre-pressed rubber block. Engineering Mechanics, Roč. 14, 1/2, s. 3-11. ISSN 1802-1484.
Google Scholar
[14]
Pešek, L. , Šulc, P. (2006). FE model of thermo-mechanical interaction in rubber block under dynamic cyclic stress. In Comsol users conference Prague 2006. Praha : Humusoft s. r. o. s. 21-21. ISBN 80-239-8131-5. 97.
Google Scholar
[15]
Půst, L., Pešek, L., Vaněk, F., Bula, V. (2007). Temperature efect on rheological properties of rubber element. Dynamika strojů 2007. Praha : Institute of Thermomechanics AS CR, v. v. i, s. 153-160.
Google Scholar
[16]
Šulc, P. (2012). Analytical-experimental methods for thermo-viscous-elastic behaviour description at dynamical loading, PhD thesis, Czech Technical University in Prague, (in Czech).
Google Scholar