Current State of Research on Bio-Source Composite

Article Preview

Abstract:

This paper is a review of the current research on bio-source composite and especially flax fibers reinforced polymers. Fabrication methods and fiber treatments are presented.The mechanical properties found in the scientific literature are discussed.Experimental results from traction tests are presented for a bio-source composite: epoxy resin reinforced with flax fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

381-388

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Directive 99/31/EC, Landfill of Waste.

Google Scholar

[2] Directive 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, 18 September (2000).

Google Scholar

[3] T. Corbière-Nicollier, B. Gfeller Laban, L. Lundquist, Y. Leterrier, J.A.E. Manson, O. Jolliet, Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour, Conserv Recy, 33 (2001) 267-287.

DOI: 10.1016/s0921-3449(01)00089-1

Google Scholar

[4] BERTHELOT J.M., Mécanique des Materiaux et Structures Composites. - Le Mans, France: ISMANS, (2010).

Google Scholar

[5] J. Summerscales, N. Dissanayake, A. Virk, W. Hall, A review of bast fibres and their composites. Part 1 – Fibres as reinforcements, Compos. Part A - Appl. S., 41 (2010) 1329-1335.

DOI: 10.1016/j.compositesa.2010.06.001

Google Scholar

[6] V. Placet, Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites, Compos. Part A - Appl. S., 40 (2009) 1111-1118.

DOI: 10.1016/j.compositesa.2009.04.031

Google Scholar

[7] C. Baley, Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase, Compos. Part A - Appl. S., 33 (2002) 939–948.

DOI: 10.1016/s1359-835x(02)00040-4

Google Scholar

[8] J. Andersons, E. Sparnins, R. Joffe, L. Wallstrom, Strength distribution of elementary flax fibres, Compos. Sci. Technol. 65 (2005) 693–702.

DOI: 10.1016/j.compscitech.2004.10.001

Google Scholar

[9] M. Ramesh, K. Palanikumar, K. Hemachandra Reddy, Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites, Compos. Part B-Eng. 48 (2013) 1-9.

DOI: 10.1016/j.compositesb.2012.12.004

Google Scholar

[10] N. Venkateshwaran, A. ElayaPerumal, A. Alavudeen, M. Thiruchitrambalam, Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites, Mater. Design, 32 (2011) 4017-4021.

DOI: 10.1016/j.matdes.2011.03.002

Google Scholar

[11] K. Charlet, J.P. Jernot, M. Gomina, J. Bréard, C. Morvan, C. Baley, Influence of an Agatha flax fibre location in a stem on its mechanical, chemical and morphological properties, Compos. Sci. Technol. 69 (2009) 1399-1403.

DOI: 10.1016/j.compscitech.2008.09.002

Google Scholar

[12] S. Liang, Etude de comportement en fatigue des composites renforcés par fibres végétales. Prise en compte de la variabilité des propriétés, Thèse de doctorat, École Doctorale Science pour l'Ingénieur et Microtechniques Université de Bourgogne, (2012).

DOI: 10.4000/trajectoires.4869

Google Scholar

[13] I. Van de Weyenberg, T. Chi Truong, B. Vangrimde, I. Verpoest, Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment, Compos. Part A - Appl. S., 37 (2006) 1368-1376.

DOI: 10.1016/j.compositesa.2005.08.016

Google Scholar

[14] M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Tensile properties of chemically treated hemp fibres as reinforcement for composites, Compos. Part B - Eng. 53 (2013) 362-368.

DOI: 10.1016/j.compositesb.2013.05.048

Google Scholar

[15] G.W. Beckermann, K.L. Pickering, Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification, Compos. Part A - Appl. S., 39 (2008) 979-988.

DOI: 10.1016/j.compositesa.2008.03.010

Google Scholar

[16] D. Scida, M. Assarar, C. Poilâne, R. Ayad, Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite, Compos. Part B - Eng., 48 (2013). 51-58.

DOI: 10.1016/j.compositesb.2012.12.010

Google Scholar

[17] X. Daoshun, H. Hong, Mechanical properties of biaxial weft-knitted flax composites, Mater. Design. 46 (2013) 264-269.

DOI: 10.1016/j.matdes.2012.10.019

Google Scholar

[18] K. Changduk, P. Hyunbum, L. Joungwhan, Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding, Mater. Lett., 130 (2014) 21-25.

DOI: 10.1016/j.matlet.2014.05.042

Google Scholar

[19] M. Assarar, D. Scida, A. El Mahi, C. Poilâne, R. Ayad, Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax–fibres and glass–fibres, Mater. Design. 32 (20111) 788-795.

DOI: 10.1016/j.matdes.2010.07.024

Google Scholar

[20] SICOMIN, Datasheet.

Google Scholar

[21] ASTM D 3171 - Standard Test Methods for Constituent Content of Composite Materials, (1999).

Google Scholar

[22] ISO 527-4, Determination of tensile properties-Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, July (1997).

DOI: 10.3403/01057400

Google Scholar

[23] B.A. Muralidhar, Tensile and compressive behaviour of multilayer flax-rib knitted preform reinforced epoxy composites, Mater. Design. 49 (2013) 400-405.

DOI: 10.1016/j.matdes.2012.12.040

Google Scholar

[24] A. Le Duigou, I. Pillin, A. Bourmaud, P. Davies, C. Baley, Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites, Compos. Part A - Appl. S. 39 (2008) 1471-1478.

DOI: 10.1016/j.compositesa.2008.05.008

Google Scholar