[1]
Directive 99/31/EC, Landfill of Waste.
Google Scholar
[2]
Directive 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, 18 September (2000).
Google Scholar
[3]
T. Corbière-Nicollier, B. Gfeller Laban, L. Lundquist, Y. Leterrier, J.A.E. Manson, O. Jolliet, Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour, Conserv Recy, 33 (2001) 267-287.
DOI: 10.1016/s0921-3449(01)00089-1
Google Scholar
[4]
BERTHELOT J.M., Mécanique des Materiaux et Structures Composites. - Le Mans, France: ISMANS, (2010).
Google Scholar
[5]
J. Summerscales, N. Dissanayake, A. Virk, W. Hall, A review of bast fibres and their composites. Part 1 – Fibres as reinforcements, Compos. Part A - Appl. S., 41 (2010) 1329-1335.
DOI: 10.1016/j.compositesa.2010.06.001
Google Scholar
[6]
V. Placet, Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites, Compos. Part A - Appl. S., 40 (2009) 1111-1118.
DOI: 10.1016/j.compositesa.2009.04.031
Google Scholar
[7]
C. Baley, Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase, Compos. Part A - Appl. S., 33 (2002) 939–948.
DOI: 10.1016/s1359-835x(02)00040-4
Google Scholar
[8]
J. Andersons, E. Sparnins, R. Joffe, L. Wallstrom, Strength distribution of elementary flax fibres, Compos. Sci. Technol. 65 (2005) 693–702.
DOI: 10.1016/j.compscitech.2004.10.001
Google Scholar
[9]
M. Ramesh, K. Palanikumar, K. Hemachandra Reddy, Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites, Compos. Part B-Eng. 48 (2013) 1-9.
DOI: 10.1016/j.compositesb.2012.12.004
Google Scholar
[10]
N. Venkateshwaran, A. ElayaPerumal, A. Alavudeen, M. Thiruchitrambalam, Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites, Mater. Design, 32 (2011) 4017-4021.
DOI: 10.1016/j.matdes.2011.03.002
Google Scholar
[11]
K. Charlet, J.P. Jernot, M. Gomina, J. Bréard, C. Morvan, C. Baley, Influence of an Agatha flax fibre location in a stem on its mechanical, chemical and morphological properties, Compos. Sci. Technol. 69 (2009) 1399-1403.
DOI: 10.1016/j.compscitech.2008.09.002
Google Scholar
[12]
S. Liang, Etude de comportement en fatigue des composites renforcés par fibres végétales. Prise en compte de la variabilité des propriétés, Thèse de doctorat, École Doctorale Science pour l'Ingénieur et Microtechniques Université de Bourgogne, (2012).
DOI: 10.4000/trajectoires.4869
Google Scholar
[13]
I. Van de Weyenberg, T. Chi Truong, B. Vangrimde, I. Verpoest, Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment, Compos. Part A - Appl. S., 37 (2006) 1368-1376.
DOI: 10.1016/j.compositesa.2005.08.016
Google Scholar
[14]
M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Tensile properties of chemically treated hemp fibres as reinforcement for composites, Compos. Part B - Eng. 53 (2013) 362-368.
DOI: 10.1016/j.compositesb.2013.05.048
Google Scholar
[15]
G.W. Beckermann, K.L. Pickering, Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification, Compos. Part A - Appl. S., 39 (2008) 979-988.
DOI: 10.1016/j.compositesa.2008.03.010
Google Scholar
[16]
D. Scida, M. Assarar, C. Poilâne, R. Ayad, Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite, Compos. Part B - Eng., 48 (2013). 51-58.
DOI: 10.1016/j.compositesb.2012.12.010
Google Scholar
[17]
X. Daoshun, H. Hong, Mechanical properties of biaxial weft-knitted flax composites, Mater. Design. 46 (2013) 264-269.
DOI: 10.1016/j.matdes.2012.10.019
Google Scholar
[18]
K. Changduk, P. Hyunbum, L. Joungwhan, Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding, Mater. Lett., 130 (2014) 21-25.
DOI: 10.1016/j.matlet.2014.05.042
Google Scholar
[19]
M. Assarar, D. Scida, A. El Mahi, C. Poilâne, R. Ayad, Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax–fibres and glass–fibres, Mater. Design. 32 (20111) 788-795.
DOI: 10.1016/j.matdes.2010.07.024
Google Scholar
[20]
SICOMIN, Datasheet.
Google Scholar
[21]
ASTM D 3171 - Standard Test Methods for Constituent Content of Composite Materials, (1999).
Google Scholar
[22]
ISO 527-4, Determination of tensile properties-Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, July (1997).
DOI: 10.3403/01057400
Google Scholar
[23]
B.A. Muralidhar, Tensile and compressive behaviour of multilayer flax-rib knitted preform reinforced epoxy composites, Mater. Design. 49 (2013) 400-405.
DOI: 10.1016/j.matdes.2012.12.040
Google Scholar
[24]
A. Le Duigou, I. Pillin, A. Bourmaud, P. Davies, C. Baley, Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites, Compos. Part A - Appl. S. 39 (2008) 1471-1478.
DOI: 10.1016/j.compositesa.2008.05.008
Google Scholar