Adaptive Control for Solar Photovoltaic Tracking System

Article Preview

Abstract:

This paper describes the behavior of adaptive control using the MIT rule for a polar aligned single axis tracking system, it´s for increase the efficiency of solar energy capturing compared to a polar fixed system, where the response of system is analyzed by simulation in Simulink – MATLAB® software. The data input for estimate the energy in the photovoltaic panels is the radiation data, that is obtained by weather station of the CAR (regional autonomous corporation) situated in the zone of study. The objective of the integration between the photovoltaic panel and the mechanics tracking system is to keep the perpendicular sunlight during the day. The MIT adaptive control tries to reduce possible errors, such a sun position data deviations, friction and environmental changes in the conventional solar tracking. This control was designed according to a typical polar aligned single axis tracker.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

377-382

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Boyle, Renewable energy, OXFORD university press, (2004).

Google Scholar

[2] H. Zhu, J. Wei, K. Wang y D. Wu, Applications of carbon materials in photovoltaic solar cells, Solar Energy Materials and Solar Cells, 93(9), (2009) 1461-1470.

DOI: 10.1016/j.solmat.2009.04.006

Google Scholar

[3] R. Bube, Photoelectronic Properties of Semiconductors, Cambridge University, Cambridge (1992), particular note the discussion given in, (1992) 232-233.

Google Scholar

[4] M. Engin y D. Engin, Optimization mechatronic sun tracking system controller's for improving performance, de Mechatronics and Automation (ICMA), 2013 IEEE International Conference, (2013).

DOI: 10.1109/icma.2013.6618069

Google Scholar

[5] W. Batayneh, A. Owais y M. Nairoukh, An intelligent fuzzy based tracking controller for a dual-axis solar PV system, Automation in Construction, 29, (2013) 100-106.

DOI: 10.1016/j.autcon.2012.09.006

Google Scholar

[6] A. N. Celik y N. Acikgoz, Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four-and five-parameter models, Applied energy, 84(1), 92007) 1-15.

DOI: 10.1016/j.apenergy.2006.04.007

Google Scholar

[7] D. Sinha y E. R. Dougherty, Fuzzification of set inclusion: theory and applications, Fuzzy sets and systems, 55(1) (1993) 15-42.

DOI: 10.1016/0165-0114(93)90299-w

Google Scholar

[8] L. -X. Wang, Adaptive fuzzy systems and control: design and stability analysis, Prentice-Hall, Inc., (1994).

Google Scholar

[9] W. Z. Qiao y M. Mizumoto, PID type fuzzy controller and parameters adaptive method, Fuzzy sets and systems, 78(1), (1996) 23-35.

DOI: 10.1016/0165-0114(95)00115-8

Google Scholar

[10] L. -X. Wang y J. M. Mendel, Generating fuzzy rules by learning from examples, Systems, Man and Cybernetics, IEEE Transactions on, 22(6), (1992) 1414-1427.

DOI: 10.1109/21.199466

Google Scholar

[11] H. Hellendoorn y C. Thomas, Defuzzification in fuzzy controllers, Journal of Intelligent \& Fuzzy Systems: Applications in Engineering and Technology, 1(2), (1993) 109-123.

DOI: 10.3233/ifs-1993-1202

Google Scholar

[12] K. J. Åström y B. Wittenmark, Adaptive control, Courier Corporation, (2013).

Google Scholar

[13] I. Landau, A survey of model reference adaptive techniques—theory and applications, Automatica, 10(4), (1974) 353-379.

DOI: 10.1016/0005-1098(74)90064-8

Google Scholar

[14] S. Sastry y M. Bodson, Adaptive control: stability, convergence and robustness, 1989, Prentice-Hall, Inc, (1989).

Google Scholar

[15] F. R. Rubio y M. J. L. Sánchez, Control adaptativo y robusto, vol. 9, Universidad de Sevilla, (1996).

Google Scholar