Prediction of Solar Radiation through the Anfis Algorithm

Article Preview

Abstract:

The constant evolution of the energy industry, has introduced the need for ongoing research studies about climate change due to its direct action on the production of alternative energies. Thus, they have focused on developing predictive algorithms in order to resolve, in an early way, the climate action on each point of energy production. In the development of this work, the ANFIS algorithm and information from the NASA Langley research center virtual database were implemented. They being oriented to the analysis and prediction of solar radiation over the geographic area of the Nueva Granada Military University campus, Cajicá, Colombia, with the purpose of making appropriate use of the power generating system located in the zone. The development of such systems, would allow the early identification of solar radiation that can be present in different geographical areas of Colombia, in order to provide the necessary power to cover the electricity demand required in each region, achieving as results an approximation error less than 1%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

389-395

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Qazi, H. Fajaz, A. Wadi, R. G. Raj, N. A. Rahim and W. A. Khan, The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review, Journal of Cleaner Production 104 (2015) 1 – 12.

DOI: 10.1016/j.jclepro.2015.04.041

Google Scholar

[2] M. Lazzaroni, S. Ferrari, . V. Piuri, A. Salman, L. Cristaldi and M. Faifer, Models for solar radiation prediction based on different measurement sites, Measurement 63 (2015) 346 – 363.

DOI: 10.1016/j.measurement.2014.11.037

Google Scholar

[3] R. R. Bhoyar and S. S. Bharatkar, Renewable energy integration in to microgrid: Powering rural Maharashtra State of India, Anual India Conferencia, Mumbai, (2013).

DOI: 10.1109/indcon.2013.6725877

Google Scholar

[4] T. R. Ayodele and A. S. O. Ogunjuyigbe, Prediction of monthly average global solar radiation based on statistical distribution of clearness index, Energy (2015).

DOI: 10.1016/j.energy.2015.06.137

Google Scholar

[5] J. C. War, Seawater Air Conditioning (SWAC) a renewable energy alternative, OCEANS 2011, Waikoloa, (2011).

DOI: 10.23919/oceans.2011.6107219

Google Scholar

[6] A. J. C. Trappey, C. V. Trappey , D. Y. C. Wang, S. J. Li and J. J. R. Ou, Evaluating renewable energy policies using hybrid clustering and analytic hierarchy process modeling, International Conference on Computer Supported Cooperative Work in Design (CSCWD), 18th ed., Hainchu, (2014).

DOI: 10.1109/cscwd.2014.6846933

Google Scholar

[7] R. Nagaraj, Renewable energy based small hybrid power system for desalination applications in remote locations, International Conference on Power Electronics (IICPE), 5th ed., Delhi, (2012).

DOI: 10.1109/iicpe.2012.6450437

Google Scholar

[8] J. Chen, S. Xiang and P. Ghosh, Energy efficient algorithms for Electric Vehicle charging with intermittent renewable energy sources, Power and Energy Society General Meeting (PES), Vancouver, (2013).

DOI: 10.1109/pesmg.2013.6672568

Google Scholar

[9] C. Jin, X. Sheng and P. Ghosh, Optimized Electric Vehicle Charging With Intermittent Renewable Energy Sources, IEEE Journal of Selected Topics in Signal Processing 8 (2014) 1063 – 1072.

DOI: 10.1109/jstsp.2014.2336624

Google Scholar

[10] J. Han, C. Choi, W. Park, I. Lee and S. Kim, Smart home energy management system including renewable energy based on ZigBee and PLC, IEEE Transactions on Consumer Electronics 60 (2014) 198 - 202.

DOI: 10.1109/tce.2014.6851994

Google Scholar

[11] R. Mohideen, The implications of clean and renewable energy development for gender equality in poor communities in South Asia, Conference on Technology and Society in Asia (T&SA), Singapore, (2012).

DOI: 10.1109/tsasia.2012.6397976

Google Scholar

[12] C. Kang-Ching, K. Kaifuku and K. Saitou, Optimal integration of alternative energy sources in production systems for minimum grid dependency and outage risk, International Conference on Automation Science and Engineering (CASE), Taipei, (2014).

DOI: 10.1109/coase.2014.6899395

Google Scholar

[13] Y. Badruzzaman, Sarjiya and A. Nur Widiastuti, Roadmap energy in special region of Yogyakarta to empower renewable energy source, International Symposium on Technology Management and Emerging Technologies (ISTMET), Bandug, (2014).

DOI: 10.1109/istmet.2014.6936520

Google Scholar

[14] L. Olatomiwa, S. Mekhilef, S. Shamshirband, K. Mohammandi, D. Petkovic and C. Sudheer, A support vector machine–firefly algorithm-based model for global solar radiation prediction, Solar Energy 115 (2015) 632 - 644.

DOI: 10.1016/j.solener.2015.03.015

Google Scholar

[15] X. Juncai, R. Qingwen and S. Zhenzhong, Prediction of the strength of concrete radiation shielding based on LS-SVM, Annals of nuclear energy 85 (2015) 296 - 300.

DOI: 10.1016/j.anucene.2015.05.030

Google Scholar

[16] M. A. Shamim, R. Remesan, M. Bray and D. Han, An improved technique for global solar radiation estimation using numerical weather prediction, Journal of Atmospheric and Solar-Terrestrial Physics 129 (2015) 13 -222.

DOI: 10.1016/j.jastp.2015.03.011

Google Scholar

[17] L. Olatomwa, S. Mekhilef, S. Shamshirband and D. Petkovic, Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria, Renewable and Sustainable Energy Reviews 51 (2015) 1784 - 1791.

DOI: 10.1016/j.rser.2015.05.068

Google Scholar

[18] S. Salcedo-Sanz, C. Casanova-Mateo, A. Pastor-Sanchez and M. Shanchez-Giron, Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach, Solar Energy 105 (2014) 91 - 98.

DOI: 10.1016/j.solener.2014.04.009

Google Scholar

[19] S. S. Devgan, Impact of environmental factors on the economic evaluation of renewable energy alternative generation, Proceedings of the 33rd Southeastern Symposium on System Theory, 33rd ed., Athens, (2001).

DOI: 10.1109/ssst.2001.918503

Google Scholar

[20] Y. Wu, V. K. N. Lau, D. H. K. Tsang, P. Q. Li and M. Limin, Optimal Energy Scheduling for Residential Smart Grid With Centralized Renewable Energy Source, IEEE Systems Journal 8 (2014) 562 - 576.

DOI: 10.1109/jsyst.2013.2261001

Google Scholar

[21] K. S. Herman, Attracting foreign direct investment the Chilean government's role promoting renewable energy, International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, (2013).

DOI: 10.1109/icrera.2013.6749722

Google Scholar

[22] M. H. Barcellos-Hoff, E. A. Blakely, S. Burma, A. J. Fornace Jr., S. Gerson, L. Hlatky, D. G. Kirsch, U. Lederer, J. Shay, J. Wang and M. M. Weil, Concepts and challenges in cancer risk prediction for the space radiation environment, Life Sciences in Space Research 6 (2015).

DOI: 10.1016/j.lssr.2015.07.006

Google Scholar

[23] M. Peña, H. Alvarez and R. Carelli, Modelo e identificacion con un modelo borroso del tipo takagi -sugeno, V Jornadas de Sistemas de Instrumentación y Control, Caracas, (2000).

Google Scholar

[24] P. W. Stackhouse, NASA Prediction of Worldwide Energy Resource (POWER), NASA, information on: http: /power. larc. nasa. gov/cgi-bin/cgiwrap/solar/timeseries. cgi?email=daily@larc. nasa. gov.

Google Scholar

[25] M. Fathi, M. Mohebbi y S. M. Ali Razavi, Application of Image Analysis and Artificial Neural Network to Predict Mass Transfer Kinetics and Color Changes of Osmotically Dehydrated Kiwifruit, Food and Bioprocess Technology 4 (2011) 1357 – 1366.

DOI: 10.1007/s11947-009-0222-y

Google Scholar

[26] R. Tapia Herrea, Seguimiento de referencias aplicadas en manipuladores robóticos, Mexico, (2013).

Google Scholar

[27] O. Castillo, J. Kacprzyk and W. Predycz, Soft Computing for Intelligent Control and Mobile Robotics, Springer, Berlin, (2010).

Google Scholar