[1]
X. Frank Xu, A multiscale stochastic finite element method on elliptic problems involving uncertainties, Computer Methods in Applied Mechanics and Engineering 196(2007), pp.2723-2736.
DOI: 10.1016/j.cma.2007.02.002
Google Scholar
[2]
I. Babuška, M. Motamed and R. Tempone, A stochastic multiscale method for the elastodynamic wave equation arising from fiber composites, Computer Methods in Applied Mechanics and Engineering 276(2014), pp.190-211.
DOI: 10.1016/j.cma.2014.02.018
Google Scholar
[3]
X. Guan et al., A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete, International Journal of Solids and Structures 56-57(2015), pp.280-289.
DOI: 10.1016/j.ijsolstr.2014.10.008
Google Scholar
[4]
W. L. Oberkampf et al., Error and uncertainty in modeling and simulation, Reliability Engineering and System Safety 75(2002), pp.333-357.
DOI: 10.1016/s0951-8320(01)00120-x
Google Scholar
[5]
P. Mantovan and E. Todini, Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, Journal of Hydrology 330(2006), pp.368-381.
DOI: 10.1016/j.jhydrol.2006.04.046
Google Scholar
[6]
K. Beven, P. Smith and J. Freer, Comment on Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, by Pietro Mantovan and Ezio Todini, Journal of Hydrology 338(2007), pp.315-318.
DOI: 10.1016/j.jhydrol.2007.02.023
Google Scholar
[7]
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, New York: Springer-Verlag, 2005. 339 p. Applied mathematical sciences. ISBN 03-872-2073-9.
DOI: 10.1007/b138659
Google Scholar
[8]
Y. M. Marzouk, H. N. Najm and L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, Journal of Computational Physics 224(2007), pp.560-586.
DOI: 10.1016/j.jcp.2006.10.010
Google Scholar
[9]
B. V. Rosić et al., Parameter Identification in a Probabilistic Setting, Engineering Structures 50(2013), pp.179-196.
Google Scholar
[10]
Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics 228(2009), p.1862-(1902).
DOI: 10.1016/j.jcp.2008.11.024
Google Scholar
[11]
J. R. Fonseca et al., Uncertainty identification by the maximum likelihood method, Journal of Sound and Vibration 288(2005), pp.587-599.
DOI: 10.1016/j.jsv.2005.07.006
Google Scholar
[12]
S. Fang, Q. Zhang and W. Ren, Parameter variability estimation using stochastic response surface model updating, Mechanical Systems and Signal Processing 49(2014), pp.249-263.
DOI: 10.1016/j.ymssp.2014.04.017
Google Scholar
[13]
K. Sepahvand and S. Marburg, Identification of composite uncertain material parameters from experimental modal data, Probabilistic Engineering Mechanics 37(2014), pp.148-153.
DOI: 10.1016/j.probengmech.2014.06.008
Google Scholar
[14]
M. Arnst, R. Ghanem and C. Soize, Identification of Bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics 229(2010), pp.3134-3154.
DOI: 10.1016/j.jcp.2009.12.033
Google Scholar
[15]
C. Soize, Stochastic modeling of uncertainties in computational structural dynamics - Recent theoretical advances, Journal of Sound and Vibration 332(2013), pp.2379-2395.
DOI: 10.1016/j.jsv.2011.10.010
Google Scholar
[16]
C. J. Geyer, Handbook of Markov Chain Monte Carlo, In: Introduction to Markov Chain Monte Carlo, Boca Raton, Fla.: Chapman & Hall/CRC, 2011, pp.3-48. ISBN 978-1-4200-7942-5.
DOI: 10.1201/b10905-2
Google Scholar
[17]
I. Jolliffe, Principal component analysis, 2nd ed. New York: Springer, 2002. 487 p. ISBN 03- 879-5442-2.
Google Scholar
[18]
D. Xiu and G. E. Karniadakis, The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM Journal on Scientific Computing 24(2002), pp.619-644.
DOI: 10.1137/s1064827501387826
Google Scholar