[1]
Fédération Internationale du Béton, Model Code for Concrete Structures 2010, Ernst & Sohn, Berlin, (2013).
Google Scholar
[2]
ACI 209, Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, American Concrete Institute, (2008).
Google Scholar
[3]
Japan Society of Civil Engineers, Standard Specifications for Concrete Structures - 2007 Design, JSCE, (2010).
Google Scholar
[4]
Z. P. Bažant, S. Baweja, Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3, in: Adam Neville Symposium: Creep and Shrinkage - Structural Design Effects, (2000).
DOI: 10.14359/9890
Google Scholar
[5]
N. J. Gardner, Comparison and prediction provisions for drying shrinkage and creep of normalstrength concretes, Canadian Journal for Civil Engineering 31 (2004) 767-775.
DOI: 10.1139/l04-046
Google Scholar
[6]
K. Sakata, Prediction of concrete creep and shrinkage, Creep and Shrinkage of Concrete 31 (2004) 767-775.
Google Scholar
[7]
M. H. Hubler, R. Wendner, Z. P. Bažant, Comprehensive database for concrete creep and shrinkage: Analysis and recommendations for testing and recording, ACI Materials Journal, in press (2015).
DOI: 10.14359/51687453
Google Scholar
[8]
O. Z. Cebeci, S. I. Al-Noury, W.H. Mirza, Strength and drying shrinkage of masonry mortars in various temperature-humidity environments, Cement and Concrete Research 19 (1989) 53-62.
DOI: 10.1016/0008-8846(89)90065-3
Google Scholar
[9]
V. Baroghel-Bouny, M. Mainguy, T. Lassabatere, O. Coussy, Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials, Cement and Concrete Research 29 (1999).
DOI: 10.1016/s0008-8846(99)00102-7
Google Scholar
[10]
T. Rougelot, F. Skoczylas, N. Burlion, Water desorption and shrinkage in mortars and cement pastes: Experimental study and poromechanical model, Cement and Concrete Research 39 (2009) 36-44.
DOI: 10.1016/j.cemconres.2008.10.005
Google Scholar
[11]
B. Patzák, OOFEM - an object-oriented simulation tool for advanced modeling of materials and structures, Acta Polytechnica 52 (2012) 59-66.
DOI: 10.14311/1678
Google Scholar
[12]
Information on http: /ksm. fsv. cvut. cz/ dr/t3d. html.
Google Scholar
[13]
Z. P. Bažant, L. J. Najjar, Nonlinear water diffusion in nonsaturated concrete, Materials and Structures 5 (1972) 3-20.
Google Scholar
[14]
Z. P. Bažant, A. P. Hauggaard, S. Baweja, F. J. Ulm, Microprestress solidification theory for concrete creep. I: Aging and drying effects, Journal of Engineering Mechanics 123 (1997) 1188- 1194.
DOI: 10.1061/(asce)0733-9399(1997)123:11(1188)
Google Scholar
[15]
M. Jirásek, P. Havlásek, P., Microprestress-solidification theory of concrete creep: Reformulation and improvement, Cement and Concrete Research 60 (2014) 51-62.
DOI: 10.1016/j.cemconres.2014.03.008
Google Scholar
[16]
Z. P. Bažant, P. Havlásek, M. Jirásek, Microprestress-solidification theory: Modeling of size effect on drying creep, in: N. Bicanic, H. Mang, G. Meschke, R. de Borst (Eds. ), EURO-C 2014, Computational Modelling of Concrete Structures, CRC Press/Balkema, EH Leiden, The Netherlands, 2014, pp.749-758.
DOI: 10.1201/b16645-84
Google Scholar
[17]
P. Havlásek, Creep and Shrinkage of Concrete Subjected to Variable Environmental Conditions, PhD. Thesis, Czech Technical University in Prague (2014).
Google Scholar