Analysis on Chaotic Vibrations of the Magneto-Rheological Suspension System

Article Preview

Abstract:

The magneto-rheological(MR) suspension system has been established, by employing the modified Bouc-wen force-velocity (F-v) model of magneto-rheological damper(MRD). The possibility of chaotic motions in MR suspension is discovered by employing nonlinear systems stability theory. With the bifurcation diagram and corresponding Lyapunov exponent spectrum diagrams detected through numerical calculation, we can observe the complex dynamical behaviors and oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations and chaotic oscillations with different profiles of road excitation, as well as the dynamical evolution to chaos by period-doubling bifurcations, saddle-node bifurcations and reverse period-doubling bifurcations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-34

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Caterino, B. M. Azmoodeh, A. Occhiuzzi, Medium to long term behavior of MR dampers for structural control, Smart Mater. Struct. 23 (2014) 117005.

DOI: 10.1088/0964-1726/23/11/117005

Google Scholar

[2] Z.D. Xu, Y.Q. Guo, Fuzzy control method for earthquake mitigation structures with magnetorheological dampers, J. Intel. Mat. Syst. Str. 17 (2006) 871-881.

DOI: 10.1177/1045389x06061044

Google Scholar

[3] E.R. Wang, L. Ying, W.J. Wang, S. Rakheja, C.Y. Su, Semi-active control of vehicle suspension with magneto-rheological dampers: Part I - Controller synthesis and evaluation, Chin. J. Mech. Eng. 21 (2008) 13-19.

DOI: 10.3901/cjme.2008.01.013

Google Scholar

[4] E.R. Wang, L. Ying, W.J. Wang, S. Rakheja, C.Y. Su, Semi-active control of vehicle suspension with magnetorheological dampers: Part II - Evaluation of suspension performance, Chin. J. Mech. Eng. 21 (2008) 45-52.

DOI: 10.3901/cjme.2008.02.045

Google Scholar

[5] E.R. Wang, L. Ying, W.J. Wang, S. Rakheja, C.Y. Su, Semi-active control of vehicle suspension with magneto-rheological dampers: Part III-experimental validation, Chin. J. Mech. Eng. 21 (2008) 56-63.

DOI: 10.3901/cjme.2008.04.056

Google Scholar

[6] M.G. Yang, C.Y. Li, Z.Q. Chen, Zheng-Qing, A new simple non-linear hysteretic model for MR damper and verification of seismic response reduction experiment, Eng. Struct. 52 (2013) 434-445.

DOI: 10.1016/j.engstruct.2013.03.006

Google Scholar

[7] I. Fitrian, A. Saiful, M.Z. Hair, A design and modelling review of rotary magnetorheological damper, Materials and Design 51 (2013) 575-591.

DOI: 10.1016/j.matdes.2013.04.042

Google Scholar

[8] B. Marek, L. Grzegorz, Transition to chaos and escape phenomenon in two-degrees-of-freedom oscillator with a kinematic excitation, Nonlinear Dynam. 70 (2012) 1125-1133.

DOI: 10.1007/s11071-012-0518-8

Google Scholar

[9] S.M. Siewe, Resonance, stability and period-doubling bifurcation of a quarter-car model excited by the road surface profile, Phys. Lett. A 374 (2010) 1469-1476.

DOI: 10.1016/j.physleta.2010.01.043

Google Scholar

[10] G. Litak, M. Borowiec, M. Ali, L.M. Saha, M.I. Friswell, Pulsive feedback control of a quarter car model forced by a road profile, Chaos Soliton Fract. 33(2007) 1672-1676.

DOI: 10.1016/j.chaos.2006.03.008

Google Scholar

[11] C.J. Albert, L. Arun, Periodic motions and stability in a semi-active suspension system with MR damping, J. Vib. Control 13 (2007) 687-709.

DOI: 10.1177/1077546307074280

Google Scholar

[12] I.H. Shames, F.A. Cozzarelli: Elastic and Inelastic Stress Analysis (Englewood Cliffs: Prentice Hall, 1992).

Google Scholar

[13] M. Ismai, F. Ikhouane, J. Rodellar, The hysteresis Bouc-Wen model, a Survey, Arch. Comput. Methods Eng. 16 (2009) 161-188.

DOI: 10.1007/s11831-009-9031-8

Google Scholar

[14] S.K. Baek, H.T. Moon, Complex hysteresis, Phys. Lett. A, 352 (1997) 89-93.

Google Scholar

[15] S.B. Choi, B.K. Lee, Y.P. Park, A hysteresis model for the field-dependent damping force of a magnetorheological damper, J. Sound Vib. 245 (2001) 375-383.

DOI: 10.1006/jsvi.2000.3539

Google Scholar

[16] H.L. Zhang, E.R. Wang, F.H. Min, S. Rakhej, and C.Y. Su, Semi-active sliding mode control of vehicle suspension with magneto-rheological damper, Chin. J. Mech. Eng. 26(2013) 498-505.

DOI: 10.3901/cjme.2014.0918.152

Google Scholar

[17] G.I. Koumene Taffo, M. Siewe Siewe, Parametric resonance, stability and heteroclinic bifurcation in a nonlinear oscillator with time-delay: Application to a quarter-car model, Mech. Res. Commun. 52 (2013) 1-10.

DOI: 10.1016/j.mechrescom.2013.05.007

Google Scholar

[18] F. Daniel, I. Rolf, Mechatronic semi-active and active vehicle suspensions, Control Eng. Pract. 12 (2004) 1353-1367.

DOI: 10.1016/j.conengprac.2003.08.003

Google Scholar